Synthesis of α-Amino Carboxylic Esters via In-Situ Formed Ligand Coupling P(V) Platform
In this work, the Kukhtin-Ramirez reaction intermediates from trivalent phosphine and α-dicarbonyl compounds were used to in situ construct pentacoordinated phosphorus compounds as the reaction platform of ligand coupling for the synthesis of α-amino carboxylic esters which was realized in one-step. This approach innovates in the in-situ conversion of Kukhtin-Ramirez inter-mediates into pentacoordinated phosphorus compounds, providing a new direction for the traditional ligand coupling reaction mode that requires pre-synthesis of pentacoordinated phosphorus compounds.
Pentacoordinated Phosphorus Compounds
有机膦类化合物在有机合成反应中有着广泛的应用,包括Wittig反应
然而在以往的这些工作中,通常都需要预先合成P(V)化合物或鏻盐作为前体,这在一定程度上增加了合成反应的复杂程度。因此,开发一种P(V)化合物的原位搭建策略并以此为平台通过配体偶联方式实现新化学键的构筑在理论探索和实践中具有重要的意义。
邻二羰基化合物由于特殊的反应活性可以与三价膦反应生成Kukhtin-Ramirez (K-R)中间体,并得到了广泛地应用
在干燥的反应管中加入邻二羰基化合物1 (0.5 mmol)以及无水四氢呋喃(5 mL),随后加入蒸馏水(10当量)。在加入NaHF2 (2.5当量)之后,将反应体系置于50℃的油浴锅中,并逐滴滴加三胺基膦(1.5当量)。待滴加完毕后,持续搅拌直至反应结束。通过旋转蒸发除去溶剂,利用柱层析进行分离纯化。
methyl 2-(dimethylamino)-2-phenylacetate (4a): 94 mg, 97%. Pale yellow oil. 1H NMR (400 MHz, Chloroform-d) δ 7.42 (d, J = 1.6 Hz, 2H), 7.38~7.27 (m, 3H), 3.87 (s, 1H), 3.68 (s, 3H), 2.24 (s, 6H).
ethyl 2-(dimethylamino)-2-(p-tolyl)acetate (4b): 82 mg, 73%. Pale yellow oil. 1H NMR (400 MHz, Chloroform-d) δ 7.36~7.29 (m, 2H), 7.15 (d, J = 7.9 Hz, 2H), 4.24~4.08 (m, 2H), 3.80 (s, 1H), 2.33 (s, 3H), 2.24 (s, 6H), 1.21 (t, J = 7.1 Hz, 3H).
ethyl 2-(dimethylamino)-2-(4-isopropylphenyl)acetate (4c): 66 mg, 53%. Pale yellow oil. 1H NMR (400 MHz, Chloroform-d) δ 7.36~7.33 (m, 2H), 7.22~7.17 (m, 2H), 4.25~4.09 (m, 2H), 3.82 (s, 1H), 2.89 (p, J = 6.9 Hz, 1H), 2.25 (s, 6H), 1.26~1.23 (m, 9H).
ethyl 2-(dimethylamino)-2-(4-fluorophenyl)acetate (4d): 88 mg, 78%. Yellow oil. 1H NMR (400 MHz, Chloroform-d) δ 7.42 (ddd, J = 8.7, 5.5, 2.7 Hz, 2H), 7.06~7.00 (m, 2H), 4.25~4.10 (m, 2H), 3.82 (s, 1H), 2.24 (s, 6H), 1.22 (t, J = 7.2 Hz, 3H).
ethyl 2-(4-chlorophenyl)-2-(dimethylamino)acetate (4e): 84 mg, 70%. Pale yellow oil. 1H NMR (400 MHz, Chloroform-d) δ 7.39 (d, J = 8.6 Hz, 2H), 7.32 (d, J = 8.5 Hz, 2H), 4.24~4.10 (m, 2H), 3.82 (s, 1H), 2.24 (s, 6H), 1.22 (t, J = 7.1 Hz, 3H).
ethyl 2-(3,4-difluorophenyl)-2-(dimethylamino)acetate (4f): 70 mg, 58%. Pale yellow oil. 1H NMR (400 MHz, Chloroform-d) δ 7.34 (ddd, J = 11.3, 7.7, 2.0 Hz, 1H), 7.22~7.08 (m, 2H), 4.32~4.09 (m, 2H), 3.81 (s, 1H), 2.25 (s, 6H), 1.23 (t, J = 7.1 Hz, 3H).
ethyl 2-(3,4-dichlorophenyl)-2-(dimethylamino)acetate (4g): 91 mg, 66%. Colorless oil. 1H NMR (400 MHz, Chloroform-d) δ 7.58 (d, J = 1.9 Hz, 1H), 7.43 (dd, J = 8.3, 0.9 Hz, 1H), 7.34~7.28 (m, 1H), 4.27~4.10 (m, 2H), 3.82 (s, 1H), 2.25 (s, 6H), 1.24 (td, J = 7.1, 1.0 Hz, 3H).
ethyl 2-(3,5-difluorophenyl)-2-(dimethylamino)acetate (4h): 89 mg, 74%. Pale yellow oil. 1H NMR (400 MHz, Chloroform-d) δ 7.04~6.98 (m, 2H), 6.77 (tt, J = 8.8, 2.3 Hz, 1H), 4.26~4.13 (m, 2H), 3.84 (s, 1H), 2.26 (s, 6H), 1.24 (td, J = 7.1, 1.2 Hz, 3H).
ethyl 2-(4-cyanophenyl)-2-(dimethylamino)acetate (4i): 93 mg, 84%. Colorless oil. 1H NMR (400 MHz, Chloroform-d) δ 7.66 (d, J = 8.0 Hz, 2H), 7.59 (d, J = 8.1 Hz, 2H), 4.25~4.11 (m, 2H), 3.94 (s, 1H), 2.26 (s, 6H), 1.23 (t, J = 7.1 Hz, 3H).
ethyl 2-(dimethylamino)-2-(4-nitrophenyl)acetate (4j): 68 mg, 53%. Yellow oil. 1H NMR (400 MHz, Chloroform-d) δ 8.27~8.18 (m, 2H), 7.66 (d, J = 8.6 Hz, 2H), 4.27~4.12 (m, 2H), 4.02 (s, 1H), 2.28 (s, 6H), 1.24 (t, J = 7.1 Hz, 3H).
methyl 2-phenyl-2-(pyrrolidin-1-yl)acetate (4k): 97 mg, 73%. Pale yellow oil. 1H NMR (400 MHz, Chloroform-d) δ 7.50~7.45 (m, 2H), 7.36~7.28 (m, 3H), 3.92 (s, 1H), 3.67 (s, 3H), 2.56 (tt, J = 7.0, 3.8 Hz, 2H), 2.44 (tq, J = 8.0, 4.2, 3.1 Hz, 2H), 1.80 (dd, J = 9.8, 3.2 Hz, 4H).
我们选用苯甲酰甲酸甲酯(1)作为模板,利用P(NMe2)3原位生成K-R中间体鏻盐,同时选用HF促进K-R中间体鏻盐构建P(V)化合物进而发生配体偶联反应(
序号 | 溶剂 | 3 (当量) | P(NMe2)3 (当量) | 时间(h) | 温度(℃) | 产率(%)b |
1 | 甲苯 | HF·Py (2.5) | 1 | 22 | rt | 5 |
2 | THF | HF·Py (2.5) | 1 | 22 | rt | 38 |
3 | 乙腈 | HF·Py (2.5) | 1 | 22 | rt | 7 |
4 | 1,4-二氧六环 | HF·Py (2.5) | 1 | 22 | rt | 4 |
续表
5 | DMF | HF·Py (2.5) | 1 | 22 | rt | 30 |
6 | DMSO | HF·Py (2.5) | 1 | 22 | rt | 5 |
7 | THF | HF·Py (1.25) | 1 | 22 | rt | 25 |
8 | THF | HF·Py (5) | 1 | 22 | rt | 17 |
9 | THF | HF·Py (2.5) | 1.5 | 22 | rt | 41 |
10 | THF | HF·Py (2.5) | / | 22 | rt | / |
11 | THF | KHF2 (2.5) | 1.5 | 22 | rt | 混乱 |
12 | THF | NaHF2 (2.5) | 1.5 | 22 | rt | 68 |
13 | THF | 3HF·TEA (2.5) | 1.5 | 22 | rt | 29 |
14 | THF | NaHF2 (2.5) | 1.5 | 14 | rt | 28 |
15 | THF | NaHF2 (2.5) | 1.5 | 30 | rt | 67 |
16 | THF | NaHF2 (2.5) | 1.5 | 22 | 50 | 80 |
17 | THF | NaHF2 (2.5) | 1.5 | 22 | 70 | 60 |
18c | THF | NaHF2 (2.5) | 1.5 | 22 | 50 | 56 |
19d | THF | NaHF2 (2.5) | 1.5 | 22 | 50 | 74 |
20e | THF | NaHF2 (2.5) | 1.5 | 22 | 50 | 97 |
21f | THF | NaHF2 (2.5) | 1.5 | 22 | 50 | 39 |
22g | THF | NaHF2 (2.5) | 1.5 | 22 | 50 | 20 |
a反应条件为1 (1当量),NaHF2 (2.5当量),P(NMe2)3 (1.5当量);b分离产率;无水THF中分别加入c2当量水;d5当量水;e10当量水;f 20当量水;g50当量水。
为了明确HF前体的影响,我们对不同的HF前体包括KHF2、NaHF2以及3HF·TEA进行了测试(
在得到最优条件的基础上,我们尝试将该策略应用到不同α-氨基酸酯类化合物的合成中(
在
本文主要介绍了一种利用三价膦与邻二羰基化合物之间Kukhtin-Ramirez反应中间体进行原位构筑P(V)化合物作为配体偶联的反应平台,并通过一步法实现了α-氨基酸酯类化合物的高效合成。NaHF2作为HF前体在该反应中具有优异的表现,显著提高了反应效率及转化率。在最优条件下,一系列苯甲酰甲酸酯衍生物都能够被有效转化为对应的α-氨基酸酯,并且通过三胺基膦能够实现胺基结构的调整从而引入不同的胺基基团。由此可见,作为无需预先制备的鏻盐类中间体,可以原位生成的K-R中间体能够通过HF的选择性活化,原位生成P(V)类化合物,并在此基础上进行配体偶联历程,实现α-氨基酸酯类化合物的合成。针对传统基于P(V)配体偶联方案需要预合成P(V)化合物的不足之处,该方法创新性地利用了K-R中间体原位转化为五配体磷类化合物进而实现配体偶联反应,这也为基于P(V)的传统配体偶联反应模式提供了新的探索方向。
南通大学大型仪器设备开放基金(No. KFJN2401)资助项目。
*通讯作者。