References
中华医学会心血管病学分会, 中华心血管病杂志编辑委员会. 中国心力衰竭诊断和治疗指南2014[J]. 中华心血管病杂志, 2014, 42(2): 98-122.
吴伟东, 易永盛, 周洋洋. microRNA在心力衰竭病理变化过程中的调节意义[J]. 心血管病学进展, 2016(5): 554-558.
Lu, Y., Wang, Y., Wang, X., Chen, H., Cai, Z. and Xiang, M. (2016) SIRT3 in Cardiovascular Diseases: Emerging Roles and Therapeutic Implications. International Journal of Cardiology, 220, 700-705. >https://doi.org/10.1016/j.ijcard.2016.06.236
Dai, L., Xie, Y., Zhang, W., Zhong, X., Wang, M., Jiang, H., et al. (2021) Weighted Gene Co-Expression Network Analysis Identifies ANGPTL4 as a Key Regulator in Diabetic Cardiomyopathy via FAK/SIRT3/ROS Pathway in Cardiomyocyte. Frontiers in Endocrinology, 12, Article 705154. >https://doi.org/10.3389/fendo.2021.705154
Zhang, D., Zhang, C., Fu, B., Sun, L., Wang, X., Chen, W., et al. (2018) Sirtuin3 Protects Aged Human Mesenchymal Stem Cells against Oxidative Stress and Enhances Efficacy of Cell Therapy for Ischaemic Heart Diseases. Journal of Cellular and Molecular Medicine, 22, 5504-5517. >https://doi.org/10.1111/jcmm.13821
Chen, Y., Chen, C., Dong, B., Xing, F., Huang, H., Yao, F., et al. (2017) AMPK Attenuates Ventricular Remodeling and Dysfunction Following Aortic Banding in Mice via the Sirt3/oxidative Stress Pathway. European Journal of Pharmacology, 814, 335-342. >https://doi.org/10.1016/j.ejphar.2017.08.042
Fu, M., Liu, M., Sauve, A.A., Jiao, X., Zhang, X., Wu, X., et al. (2006) Hormonal Control of Androgen Receptor Function through Sirt1. Molecular and Cellular Biology, 26, 8122-8135. >https://doi.org/10.1128/mcb.00289-06
Zhang, J., Xiang, H., Liu, J., Chen, Y., He, R. and Liu, B. (2020) Mitochondrial Sirtuin 3: New Emerging Biological Function and Therapeutic Target. Theranostics, 10, 8315-8342. >https://doi.org/10.7150/thno.45922
Onyango, P., Celic, I., McCaffery, J.M., Boeke, J.D. and Feinberg, A.P. (2002) SIRT3, a Human SIR2 Homologue, Is an NAD-Dependent Deacetylase Localized to Mitochondria. Proceedings of the National Academy of Sciences, 99, 13653-13658. >https://doi.org/10.1073/pnas.222538099
Schwer, B., North, B.J., Frye, R.A., Ott, M. and Verdin, E. (2002) The Human Silent Information Regulator (sir)2 Homologue Hsirt3 Is a Mitochondrial Nicotinamide Adenine Dinucleotide-Dependent Deacetylase. The Journal of Cell Biology, 158, 647-657. >https://doi.org/10.1083/jcb.200205057
Zhang, X., Ameer, F.S., Azhar, G. and Wei, J.Y. (2021) Alternative Splicing Increases Sirtuin Gene Family Diversity and Modulates Their Subcellular Localization and Function. International Journal of Molecular Sciences, 22, Article 473. >https://doi.org/10.3390/ijms22020473
Paku, M., Haraguchi, N., Takeda, M., Fujino, S., Ogino, T., Takahashi, H., et al. (2021) Sirt3-Mediated SOD2 and Pgc-1α Contribute to Chemoresistance in Colorectal Cancer Cells. Annals of Surgical Oncology, 28, 4720-4732. >https://doi.org/10.1245/s10434-020-09373-x
Mihanfar, A., Nejabati, H.R., Fattahi, A., latifi, Z., Faridvand, Y., Pezeshkian, M., et al. (2018) Sirt3-Mediated Cardiac Remodeling/Repair Following Myocardial Infarction. Biomedicine&Pharmacotherapy, 108, 367-373. >https://doi.org/10.1016/j.biopha.2018.09.079
Li, M., Li, C., Ye, Z., Huang, J., Li, Y., Lai, W., et al. (2020) Sirt3 Modulates Fatty Acid Oxidation and Attenuates Cisplatin-Induced AKI in Mice. Journal of Cellular and Molecular Medicine, 24, 5109-5121. >https://doi.org/10.1111/jcmm.15148
Barroso, E., Rodríguez-Rodríguez, R., Zarei, M., Pizarro-Degado, J., Planavila, A., Palomer, X., et al. (2020) SIRT3 Deficiency Exacerbates Fatty Liver by Attenuating the HIF1α-LIPIN 1 Pathway and Increasing CD36 through Nrf2. Cell Communication and Signaling, 18, Article No. 147. >https://doi.org/10.1186/s12964-020-00640-8
Anamika Khanna, A., Acharjee, P., Acharjee, A. and Trigun, S.K. (2019) Mitochondrial SIRT3 and Neurodegenerative Brain Disorders. Journal of Chemical Neuroanatomy, 95, 43-53. >https://doi.org/10.1016/j.jchemneu.2017.11.009
Sopic, M., Robinson, E.L., Emanueli, C., Srivastava, P., Angione, C., Gaetano, C., et al. (2023) Integration of Epigenetic Regulatory Mechanisms in Heart Failure. Basic Research in Cardiology, 118, Article No. 16. >https://doi.org/10.1007/s00395-023-00986-3
Stillman, B. (2018) Histone Modifications: Insights into Their Influence on Gene Expression. Cell, 175, 6-9. >https://doi.org/10.1016/j.cell.2018.08.032
Strahl, B.D. and Allis, C.D. (2000) The Language of Covalent Histone Modifications. Nature, 403, 41-45. >https://doi.org/10.1038/47412
Koser, F., Hobbach, A.J., Abdellatif, M., Herbst, V., Türk, C., Reinecke, H., et al. (2022) Acetylation and Phosphorylation Changes to Cardiac Proteins in Experimental HfpEF Due to Metabolic Risk Reveal Targets for Treatment. Life Sciences, 309, Article 120998. >https://doi.org/10.1016/j.lfs.2022.120998
de Loof, M., Renguet, E., Ginion, A., Bouzin, C., Horman, S., Beauloye, C., et al. (2023) Enhanced Protein Acetylation Initiates Fatty Acid-Mediated Inhibition of Cardiac Glucose Transport. American Journal of Physiology-Heart and Circulatory Physiology, 324, H305-H317. >https://doi.org/10.1152/ajpheart.00449.2022
Chelladurai, P., Boucherat, O., Stenmark, K., Kracht, M., Seeger, W., Bauer, U. M., Bonnet,Chelladurai, P., Boucherat, O., Stenmark, K., Kracht, M., Seeger, W., Bauer, U., et al. (2020) Targeting Histone Acetylation in Pulmonary Hypertension and Right Ventricular Hypertrophy. British Journal of Pharmacology, 178, 54-71. >https://doi.org/10.1111/bph.14932
Qin, J., Guo, N., Tong, J. and Wang, Z. (2021) Function of Histone Methylation and Acetylation Modifiers in Cardiac Hypertrophy. Journal of Molecular and Cellular Cardiology, 159, 120-129. >https://doi.org/10.1016/j.yjmcc.2021.06.011
Scott, I. and Sack, M.N. (2020) Rethinking Protein Acetylation in Pressure Overload-Induced Heart Failure. Circulation Research, 127, 1109-1111. >https://doi.org/10.1161/circresaha.120.317910
Yu, Q., Zhao, G., Liu, J., Peng, Y., Xu, X., Zhao, F., et al. (2023) The Role of Histone Deacetylases in Cardiac Energy Metabolism in Heart Diseases. Metabolism, 142, Article 155532. >https://doi.org/10.1016/j.metabol.2023.155532
Chan, D.C. (2020) Mitochondrial Dynamics and Its Involvement in Disease. Annual Review of Pathology: Mechanisms of Disease, 15, 235-259. >https://doi.org/10.1146/annurev-pathmechdis-012419-032711
van der Bliek, A.M., Shen, Q. and Kawajiri, S. (2013) Mechanisms of Mitochondrial Fission and Fusion. Cold Spring Harbor Perspectives in Biology, 5, a011072. >https://doi.org/10.1101/cshperspect.a011072
Hu, J., Liu, T., Fu, F., Cui, Z., Lai, Q., Zhang, Y., et al. (2022) Omentin1 Ameliorates Myocardial Ischemia-Induced Heart Failure via SIRT3/FOXO3a-Dependent Mitochondrial Dynamical Homeostasis and Mitophagy. Journal of Translational Medicine, 20, Article No. 447. >https://doi.org/10.1186/s12967-022-03642-x
Nan, J., Hu, H., Sun, Y., Zhu, L., Wang, Y., Zhong, Z., et al. (2017) TNFR2 Stimulation Promotes Mitochondrial Fusion via Stat3-and NF-kB-Dependent Activation of OPA1 Expression. Circulation Research, 121, 392-410. >https://doi.org/10.1161/circresaha.117.311143
胡伯昂. SIRT3基因在慢性心力衰竭患者中的表达及其与氧化应激的相关性研究[D]: [硕士学位论文]. 济南: 山东大学, 2019.
Li, H. and Cai, Z. (2023) SIRT3 Regulates Mitochondrial Biogenesis in Aging-Related Diseases. The Journal of Biomedical Research, 37, 77-88. >https://doi.org/10.7555/jbr.36.20220078
Samant, S.A., Zhang, H.J., Hong, Z., Pillai, V.B., Sundaresan, N.R., Wolfgeher, D., et al. (2014) SIRT3 Deacetylates and Activates OPA1 to Regulate Mitochondrial Dynamics during Stress. Molecular and Cellular Biology, 34, 807-819. >https://doi.org/10.1128/mcb.01483-13
Liu, J., Yan, W., Zhao, X., Jia, Q., Wang, J., Zhang, H., Liu, C., He, K. and Sun, Z. (2019) Sirt3 Attenuates Post-Infarction Cardiac Injury via Inhibiting Mitochondrial Fission and Normalization of Ampk-Drp1 Pathways. Cellular Signalling, 53, 1-13. >https://doi.org/10.1016/j.cellsig.2018.09.009
Geng, Z., Chen, W., Lu, Q., Fu, B. and Fu, X. (2024) UCP2 Overexpression Activates SIRT3 to Regulate Oxidative Stress and Mitochondrial Dynamics Induced by Myocardial Injury. Archives of Biochemistry and Biophysics, 753, Article 109918. >https://doi.org/10.1016/j.abb.2024.109918
Tsutsui, H., Kinugawa, S. and Matsushima, S. (2008) Mitochondrial Oxidative Stress and Dysfunction in Myocardial Remodelling. Cardiovascular Research, 81, 449-456. >https://doi.org/10.1093/cvr/cvn280
Pagan, L.U., Gomes, M.J., Martinez, P.F. and Okoshi, M.P. (2022) Oxidative Stress and Heart Failure: Mechanisms, Signalling Pathways, and Therapeutics. Oxidative Medicine and Cellular Longevity, 2022, 1-3. >https://doi.org/10.1155/2022/9829505
Peng, S., Lu, X., Qi, Y., Li, J., Xu, J., Yuan, T., et al. (2020) LCZ696 Ameliorates Oxidative Stress and Pressure Overload-Induced Pathological Cardiac Remodeling by Regulating the Sirt3/MnSOD Pathway. Oxidative Medicine and Cellular Longevity, 2020, 1-15. >https://doi.org/10.1155/2020/9815039
Chen, Y., Luo, H., Sun, L., Xu, M., Yu, J., Liu, L., et al. (2018) Dihydromyricetin Attenuates Myocardial Hypertrophy Induced by Transverse Aortic Constriction via Oxidative Stress Inhibition and SIRT3 Pathway Enhancement. International Journal of Molecular Sciences, 19, Article 2592. >https://doi.org/10.3390/ijms19092592
Chang, G., Chen, Y., Zhang, H. and Zhou, W. (2019) Trans Sodium Crocetinate Alleviates Ischemia/reperfusion-Induced Myocardial Oxidative Stress and Apoptosis via the SIRT3/FOXO3a/SOD2 Signaling Pathway. International Immunopharmacology, 71, 361-371. >https://doi.org/10.1016/j.intimp.2019.03.056
郑婧婧, 卜宁, 赵钊, 等. 心肌肥大表观遗传调控的研究进展[J]. 基础医学与临床, 2022(3): 520-524.
Ding, Y., Zhang, Y., Lu, J., Li, B., Yu, W., Yue, Z., et al. (2020) Microrna-214 Contributes to Ang II-Induced Cardiac Hypertrophy by Targeting SIRT3 to Provoke Mitochondrial Malfunction. Acta Pharmacologica Sinica, 42, 1422-1436. >https://doi.org/10.1038/s41401-020-00563-7
Li, Z., Lu, G., Lu, J., Wang, P., Zhang, X., Zou, Y., et al. (2022) SZC-6, a Small-Molecule Activator of SIRT3, Attenuates Cardiac Hypertrophy in Mice. Acta Pharmacologica Sinica, 44, 546-560. >https://doi.org/10.1038/s41401-022-00966-8
Li, Z., Hu, O., Xu, S., Lin, C., Yu, W., Ma, D., et al. (2024) The SIRT3-ATAD3A Axis Regulates MAM Dynamics and Mitochondrial Calcium Homeostasis in Cardiac Hypertrophy. International Journal of Biological Sciences, 20, 831-847. >https://doi.org/10.7150/ijbs.89253
Feng, X., Wang, Y., Chen, W., Xu, S., Li, L., Geng, Y., et al. (2020) SIRT3 Inhibits Cardiac Hypertrophy by Regulating PARP-1 Activity. Aging, 12, 4178-4192. >https://doi.org/10.18632/aging.102862
Wang, M., Ding, Y., Hu, Y., Li, Z., Luo, W., Liu, P., et al. (2023) SIRT3 Improved Peroxisomes-Mitochondria Interplay and Prevented Cardiac Hypertrophy via Preserving PEX5 Expression. Redox Biology, 62, Article 102652. >https://doi.org/10.1016/j.redox.2023.102652
Soliman, H. and Rossi, F.M.V. (2020) Cardiac Fibroblast Diversity in Health and Disease. Matrix Biology, 91, 75-91. >https://doi.org/10.1016/j.matbio.2020.05.003
易胜利, 邓玮. 心肌纤维化发病机制研究进展[J]. 现代医药生, 2022, 38(12): 2051-2055.
Su, H., Zeng, H., Liu, B. and Chen, J. (2020) Sirtuin 3 Is Essential for Hypertension-Induced Cardiac Fibrosis via Mediating Pericyte Transition. Journal of Cellular and Molecular Medicine, 24, 8057-8068. >https://doi.org/10.1111/jcmm.15437
Su, H., Cantrell, A.C., Chen, J., Gu, W. and Zeng, H. (2023) SIRT3 Deficiency Enhances Ferroptosis and Promotes Cardiac Fibrosis via P53 Acetylation. Cells, 12, Article 1428. >https://doi.org/10.3390/cells12101428
Palomer, X., Román-Azcona, M.S., Pizarro-Delgado, J., Planavila, A., Villarroya, F., Valenzuela-Alcaraz, B., et al. (2020) Sirt3-Mediated Inhibition of FOS through Histone H3 Deacetylation Prevents Cardiac Fibrosis and Inflammation. Signal Transduction and Targeted Therapy, 5, Article No. 14. >https://doi.org/10.1038/s41392-020-0114-1
雷雨, 任静, 付蓉, 等. 心力衰竭与心肌细胞凋亡及中医药研究进展[J]. 中医药临床杂志, 2021(9): 1834-1837.
Zhai, M., Li, B., Duan, W., Jing, L., Zhang, B., Zhang, M., et al. (2017) Melatonin Ameliorates Myocardial Ischemia Reperfusion Injury through Sirt3-Dependent Regulation of Oxidative Stress and Apoptosis. Journal of Pineal Research, 63, e12419. >https://doi.org/10.1111/jpi.12419
Adam, L.N., Al-Habib, O.A.M. and Shekha, M.S. (2023) Exploring the Role of Sirtuin 3 Gene Polymorphisms and Oxidative Stress Markers in the Susceptibility to Coronary Artery Disease. Molecular Biology Reports, 50, 9221-9228. >https://doi.org/10.1007/s11033-023-08825-3
Song, X., Wang, H., Wang, C., Ji, G., Jiang, P., Liang, D., et al. (2022) Association of Sirtuin Gene Polymorphisms with Susceptibility to Coronary Artery Disease in a North Chinese Population. BioMed Research International, 2022, 1-8. >https://doi.org/10.1155/2022/4294008
朱林. SIRT3基因多态性与老年慢性心衰相关性的初步临床研究[D]: [硕士学位论文]. 济南: 山东大学, 2017.