References
Bai, Q., Han, K., Dong, K., Zheng, C., Zhang, Y., Long, Q., et al. (2020) Potential Applications of Nanomaterials and Technology for Diabetic Wound Healing. International Journal of Nanomedicine, 15, 9717-9743. >https://doi.org/10.2147/ijn.s276001
Zhang, Y., Zhu, Y., Ma, P., Wu, H., Xiao, D., Zhang, Y., et al. (2023) Functional Carbohydrate-Based Hydrogels for Diabetic Wound Therapy. Carbohydrate Polymers, 312, Article 120823. >https://doi.org/10.1016/j.carbpol.2023.120823
Li, Y., Leng, Y., Liu, Y., Zhong, J., Li, J., Zhang, S., et al. (2024) Advanced Multifunctional Hydrogels for Diabetic Foot Ulcer Healing: Active Substances and Biological Functions. Journal of Diabetes, 16, e13537. >https://doi.org/10.1111/1753-0407.13537
Holl, J., Kowalewski, C., Zimek, Z., Fiedor, P., Kaminski, A., Oldak, T., et al. (2021) Chronic Diabetic Wounds and Their Treatment with Skin Substitutes. Cells, 10, Article 655. >https://doi.org/10.3390/cells10030655
Loots, M.A.M., Lamme, E.N., Zeegelaar, J., Mekkes, J.R., Bos, J.D. and Middelkoop, E. (1998) Differences in Cellular Infiltrate and Extracellular Matrix of Chronic Diabetic and Venous Ulcers versus Acute Wounds. Journal of Investigative Dermatology, 111, 850-857. >https://doi.org/10.1046/j.1523-1747.1998.00381.x
Xiao, Y., Qian, J., Deng, X., Zhang, H., Wang, J., Luo, Z., et al. (2024) Macrophages Regulate Healing-Associated Fibroblasts in Diabetic Wound. Molecular Biology Reports, 51, Article No. 203. >https://doi.org/10.1007/s11033-023-09100-1
Okonkwo, U. and DiPietro, L. (2017) Diabetes and Wound Angiogenesis. International Journal of Molecular Sciences, 18, Article 1419. >https://doi.org/10.3390/ijms18071419
Golledge, J. and Thanigaimani, S. (2021) Novel Therapeutic Targets for Diabetes-Related Wounds or Ulcers: An Update on Preclinical and Clinical Research. Expert Opinion on Therapeutic Targets, 25, 1061-1075. >https://doi.org/10.1080/14728222.2021.2014816
Kimball, A., Schaller, M., Joshi, A., Davis, F.M., denDekker, A., Boniakowski, A., et al. (2018) Ly6C
HiBlood Monocyte/Macrophage Drive Chronic Inflammation and Impair Wound Healing in Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, 1102-1114. >https://doi.org/10.1161/atvbaha.118.310703
Yan, C., Chen, J., Wang, C., Yuan, M., Kang, Y., Wu, Z., et al. (2022) Milk Exosomes-Mediated miR-31-5p Delivery Accelerates Diabetic Wound Healing through Promoting Angiogenesis. Drug Delivery, 29, 214-228. >https://doi.org/10.1080/10717544.2021.2023699
Baltzis, D., Eleftheriadou, I. and Veves, A. (2014) Pathogenesis and Treatment of Impaired Wound Healing in Diabetes Mellitus: New Insights. Advances in Therapy, 31, 817-836. >https://doi.org/10.1007/s12325-014-0140-x
Chang, M. and Nguyen, T.T. (2021) Strategy for Treatment of Infected Diabetic Foot Ulcers. Accounts of Chemical Research, 54, 1080-1093. >https://doi.org/10.1021/acs.accounts.0c00864
Kharaziha, M., Baidya, A. and Annabi, N. (2021) Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. Advanced Materials, 33, Article 2100176. >https://doi.org/10.1002/adma.202100176
Zhao, H., Huang, J., Li, Y., Lv, X., Zhou, H., Wang, H., et al. (2020) ROS-Scavenging Hydrogel to Promote Healing of Bacteria Infected Diabetic Wounds. Biomaterials, 258, Article 120286. >https://doi.org/10.1016/j.biomaterials.2020.120286
Salazar, J.J., Ennis, W.J. and Koh, T.J. (2016) Diabetes Medications: Impact on Inflammation and Wound Healing. Journal of Diabetes and Its Complications, 30, 746-752. >https://doi.org/10.1016/j.jdiacomp.2015.12.017
Huang, C., Dong, L., Zhao, B., Lu, Y., Huang, S., Yuan, Z., et al. (2022) Anti‐Inflammatory Hydrogel Dressings and Skin Wound Healing. Clinical and Translational Medicine, 12, e1094. >https://doi.org/10.1002/ctm2.1094
Hunter, S., Langemo, D.K., Anderson, J., Hanson, D. and Thompson, P. (2010) Hyperbaric Oxygen Therapy for Chronic Wounds. Advances in Skin & Wound Care, 23, 116-119. >https://doi.org/10.1097/01.asw.0000363517.55135.c2
Chen, L., Zheng, B., Xu, Y., Sun, C., Wu, W., Xie, X., et al. (2023) Nano Hydrogel-Based Oxygen-Releasing Stem Cell Transplantation System for Treating Diabetic Foot. Journal of Nanobiotechnology, 21, Article No. 202. >https://doi.org/10.1186/s12951-023-01925-z
Fowler, E.M., Vesely, N., Johnson, V., Harwood, J., Tran, J. and Amberry, T. (2003) Wound Care for Patients with Diabetes. Advances in Skin & Wound Care, 16, 342-346. >https://doi.org/10.1097/00129334-200312000-00009
Li, M., Hou, Q., Zhong, L., Zhao, Y. and Fu, X. (2021) Macrophage Related Chronic Inflammation in Non-Healing Wounds. Frontiers in Immunology, 12, Article 681710. >https://doi.org/10.3389/fimmu.2021.681710
Aitcheson, S.M., Frentiu, F.D., Hurn, S.E., Edwards, K. and Murray, R.Z. (2021) Skin Wound Healing: Normal Macrophage Function and Macrophage Dysfunction in Diabetic Wounds. Molecules, 26, Article 4917. >https://doi.org/10.3390/molecules26164917
Kim, S.Y. and Nair, M.G. (2019) Macrophages in Wound Healing: Activation and Plasticity. Immunology & Cell Biology, 97, 258-267. >https://doi.org/10.1111/imcb.12236
Sharifiaghdam, M., Shaabani, E., Faridi-Majidi, R., De Smedt, S.C., Braeckmans, K. and Fraire, J.C. (2022) Macrophages as a Therapeutic Target to Promote Diabetic Wound Healing. Molecular Therapy, 30, 2891-2908. >https://doi.org/10.1016/j.ymthe.2022.07.016
Liang, Y., He, J. and Guo, B. (2021) Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano, 15, 12687-12722. >https://doi.org/10.1021/acsnano.1c04206
Xu, Y., Hu, Q., Wei, Z., Ou, Y., Cao, Y., Zhou, H., et al. (2023) Advanced Polymer Hydrogels That Promote Diabetic Ulcer Healing: Mechanisms, Classifications, and Medical Applications. Biomaterials Research, 27, Article 36. >https://doi.org/10.1186/s40824-023-00379-6
Boodhoo, K., Vlok, M., Tabb, D.L., Myburgh, K.H. and van de Vyver, M. (2021) Dysregulated Healing Responses in Diabetic Wounds Occur in the Early Stages Postinjury. Journal of Molecular Endocrinology, 66, 141-155. >https://doi.org/10.1530/jme-20-0256
Liu, J., Qu, S., Suo, Z. and Yang, W. (2021) Functional Hydrogel Coatings. National Science Review, 8, nwaa254. >https://doi.org/10.1093/nsr/nwaa254
Hamidi, M., Azadi, A. and Rafiei, P. (2008) Hydrogel Nanoparticles in Drug Delivery. Advanced Drug Delivery Reviews, 60, 1638-1649. >https://doi.org/10.1016/j.addr.2008.08.002
Li, Q., Wang, D., Jiang, Z., Li, R., Xue, T., Lin, C., et al. (2022) Advances of Hydrogel Combined with Stem Cells in Promoting Chronic Wound Healing. Frontiers in Chemistry, 10, Article 1038839. >https://doi.org/10.3389/fchem.2022.1038839
Wang, C., Wang, M., Xu, T., Zhang, X., Lin, C., Gao, W., et al. (2019) Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for Promoting Chronic Diabetic Wound Healing and Complete Skin Regeneration. Theranostics, 9, 65-76. >https://doi.org/10.7150/thno.29766
Zhao, H., Huang, J., Li, Y., Lv, X., Zhou, H., Wang, H., et al. (2020) Ros-Scavenging Hydrogel to Promote Healing of Bacteria Infected Diabetic Wounds. Biomaterials, 258, Article 120286. >https://doi.org/10.1016/j.biomaterials.2020.120286
Xiong, Y., Chen, L., Liu, P., Yu, T., Lin, C., Yan, C., et al. (2021) All‐in‐One: Multifunctional Hydrogel Accelerates Oxidative Diabetic Wound Healing through Timed‐Release of Exosome and Fibroblast Growth Factor. Small, 18, Article 2104229. >https://doi.org/10.1002/smll.202104229
Chen, T., Wen, T., Dai, N. and Hsu, S. (2021) Cryogel/Hydrogel Biomaterials and Acupuncture Combined to Promote Diabetic Skin Wound Healing through Immunomodulation. Biomaterials, 269, Article 120608. >https://doi.org/10.1016/j.biomaterials.2020.120608
Zhu, W., Dong, Y., Xu, P., Pan, Q., Jia, K., Jin, P., et al. (2022) A Composite Hydrogel Containing Resveratrol-Laden Nanoparticles and Platelet-Derived Extracellular Vesicles Promotes Wound Healing in Diabetic Mice. Acta Biomaterialia, 154, 212-230. >https://doi.org/10.1016/j.actbio.2022.10.038
Qi, X., Cai, E., Xiang, Y., Zhang, C., Ge, X., Wang, J., et al. (2023) An Immunomodulatory Hydrogel by Hyperthermia‐assisted Self‐Cascade Glucose Depletion and ROS Scavenging for Diabetic Foot Ulcer Wound Therapeutics. Advanced Materials, 35, Article 2306632. >https://doi.org/10.1002/adma.202306632