基于此,本论文以酸处理的科琴黑为催化剂载体,氯亚铂酸钾和硝酸镍为主要金属催化剂前驱体,通过超声辅助还原法将金属离子Pt2+和Ni2+还原为PtNi合金,并以纳米团簇的形式沉积于载体上,成功制备出高效、稳定的酸处理PtNi纳米团簇催化剂(PtNiNC-acid)。研究发现,当电流密度为50 mA cm−2时,PtNiNC-acid的过电位为33 mV;PtNiNC-acid在10 mA cm−2和100 mA cm−2的电流密度下,分别具有55 h和45 h的优良稳定性,这证明了PtNiNC-acid在碱性溶液中具有较高的HER活性和稳定性。
Figure 1. (a) (b) TEM images of PtNiNC-acid at different magnifications, (c) HRTEM images of PtNiNC-acid, and (d) HAADF-STEM and EDS images of PtNiNC-acid--图1. (a) (b) PtNiNC-acid在不同放大倍率下的TEM图,(c) PtNiNC-acid的HRTEM图,(d) PtNiNC-acid的HAADF-STEM和EDS图--3.2. 红外光谱分析
Figure 5. Experimental plots of contact angles for Ptninc-acid, PtNiNC, and commercial Pt/C--图5. PtNiNC-acid、PtNiNC和商业Pt/C的接触角实验图--3.6. HER性能分析
此次分析中,利用1 M KOH为电解质溶液,测试了PtNiNC-acid,PtNiNC以及商业Pt/C的HER性能。以 50 mA cm−2、100 mA cm−2、200 mA cm−2电流密度所对应的过电位来评估催化剂的性能好坏。如
图6(a)
不同催化剂的LSV曲线结果可见,PtNiNC-acid的析氢性能最好,其次是PtNiNC,商业Pt/C的性能最差。由
图6(b)
可看到,当电流密度为50 mA cm−2时,PtNiNC-acid、PtNiNC以及商业Pt/C具有33 mV、80 mV、150 mV的过电位;当电流密度为100 mA cm−2时,其具有51 mV、148 mV、286 mV的过电位;当电流密度为200 mA cm−2时,其具有79 mV、275 mV、526 mV的过电位。在以上三个电流密度下,PtNiNC-acid都有最优异的催化性能,可能是由于PtNiNC-acid表面氧含量增加,亲水性提高,催化性能提高,同时Ni的掺杂,电催化活性组分的协同作用也使HER电催化活性提高。如
图6(c)
所示为该系列催化剂的塔菲尔斜率结果,PtNiNC-acid、PtNiNC、Pt/C的塔菲尔斜率分别为115.66 mV dec−1、153.67 mV dec−1、213.9 mV dec−1。Tafel斜率的数值大小与催化剂的电子转移速度呈负相关,其数值越小,越有利于电化学反应的进行。由三者的比较可知,PtNiNC-acid的塔菲尔斜率最小,这说明PtNiNC-acid的表面电子转移速度更快,反应动力学更快
[15]
。
Figure 6. (a) LSV plots for Ptninc-acid, PtNiNC, and Pt/C, (b) overpotential plots for each catalyst at different current densities, and (c) Tafel slope plots for Ptninc-acid, PtNiNC, and Pt/C--图6. (a) PtNiNC-acid、PtNiNC和Pt/C的LSV图,(b) 不同电流密度下各催化剂的过电位图,(c) PtNiNC-acid、PtNiNC和Pt/C的塔菲尔斜率图--3.7. 双电层电容分析
Figure 7. (a)(b)(c) shows the CV curves of Ptninc-acid, PtNiNC, and commercial Pt/C at different sweeping speeds, and (d) the corresponding electrical double layer capacitance of Ptninc-acid, PtNiNC, and commercial Pt/C--图7. (a)(b)(c)为PtNiNC-acid、PtNiNC和商业Pt/C在不同扫速下的CV曲线,(d) PtNiNC-acid、PtNiNC和商业Pt/C对应的双电层电容--Figure 8. PtNiNC-acid, PtNiNC and commercial Pt/C ECSA figure--图8. PtNiNC-acid、PtNiNC和商业Pt/C的ECSA图--3.8. 阻抗分析
Figure 9. EIS plots of Ptninc-acid, PtNiNC, and commercial Pt/C--图9. PtNiNC-acid、PtNiNC和商业Pt/C的EIS图--3.9. 稳定性分析
如今对于过渡金属、非金属催化剂的研究虽然有一定进展,但是都无法取代商业Pt/C,很大一部分原因是因为稳定性、循环利用性较差,不利于长期的工业化使用。如
图10
所示,测试了PtNiNC-acid和商业Pt/C在小电流密度(10 mA cm−2)和大电流密度(100 mA cm−2)下的稳定性。可见,在10 mA cm−2下,PtNiNC-acid可持续55 h以上且依然保持较好性能,而商业Pt/C在20 h后,性能便出现明显的衰减。在100 mA cm−2下,PtNiNC-acid可持续45 h以上,而商业Pt/C电流密度一直在衰退,说明PtNiNC-acid的内部结构稳定,且在一定程度阻碍了中间体对Pt活性点的毒害,保证了其更优异的稳定性。
Figure 10. Stability test plots of PtNiNC-acid and commercial Pt/C--图10. PtNiNC-acid和商业Pt/C的稳定性测试图--4. 结论和未来展望
本章以酸处理的科琴黑为催化剂载体,氯亚铂酸钾和硝酸镍为主要金属催化剂前驱体,通过试剂辅助还原法将金属Pt2+和Ni2+离子还原为PtNi并沉积于载体上,从而制备出酸处理的PtNi纳米团簇催化剂(PtNiNC-acid)。作为对照将未进行酸处理的科琴黑作为载体,用同样方法制备出PtNi纳米团簇催化剂(PtNiNC)。将制得的PtNiNC-acid和PtNiNC进行物性表征,透射电子显微镜分析表明PtNi纳米簇均匀分散在载体表面。红外光谱分析及接触角测试证明酸处理后材料亲水性增强。XRD测试表明较小的Ni原子取代了部分Pt,伴随着晶格收缩,从而导致晶格间距减小。随后进行的电化学测试结果表明,当电流密度为50 mA cm−2时,PtNiNC-acid、PtNiNC和商用Pt/C分别具有33 mV、80 mV、150 mV的过电位。在10 mA cm−2和100 mA cm−2时,PtNiNC-acid分别具有55 h和45 h的稳定性,而商业Pt/C在10 mA cm−2时仅有20 h的稳定性,且在100 mA cm−2时性能更是一直在缓缓衰退。这证明合成的PtNiNC-acid催化活性和稳定性优良,表面有效活性面积更大,且界面电子的相互作用增强,电子转移速度更快,该方法为HER催化剂进一步发展提供了思路。
References
Liu, T., Li, M., Jiao, C., Hassan, M., Bo, X., Zhou, M., et al. (2017) Design and Synthesis of Integrally Structured Ni
3N Nanosheets/Carbon Microfibers/Ni
3N Nanosheets for Efficient Full Water Splitting Catalysis. Journal of Materials Chemistry A, 5, 9377-9390. >https://doi.org/10.1039/c7ta02217d
Chen, L., Kang, L., Cai, D., Geng, S., Liu, Y., Chen, J., et al. (2023) Ultrafine Pt-Based Catalyst Decorated with Oxygenophilic Ni-Sites Accelerating Alkaline H
2O Dissociation for Efficient Hydrogen Evolution. Journal of Colloid and Interface Science, 650, 1715-1724. >https://doi.org/10.1016/j.jcis.2023.07.119
Miyake, T., Oike, M., Yoshino, S., Yatagawa, Y., Haneda, K., Kaji, H., et al. (2009) Biofuel Cell Anode: NAD
+/Glucose Dehydrogenase-Coimmobilized Ketjenblack Electrode. Chemical Physics Letters, 480, 123-126. >https://doi.org/10.1016/j.cplett.2009.08.075
Liu, Y., Li, X., Zhang, Q., Li, W., Xie, Y., Liu, H., et al. (2019) A General Route to Prepare Low‐Ruthenium‐Content Bimetallic Electrocatalysts for pH‐Universal Hydrogen Evolution Reaction by Using Carbon Quantum Dots. Angewandte Chemie International Edition, 59, 1718-1726. >https://doi.org/10.1002/anie.201913910
Wan, C., Sun, L., Xu, L., Cheng, D., Chen, F., Zhan, X., et al. (2019) Novel Nipt Alloy Nanoparticle Decorated 2D Layered G-C
3N
4Nanosheets: A Highly Efficient Catalyst for Hydrogen Generation from Hydrous Hydrazine. Journal of Materials Chemistry A, 7, 8798-8804. >https://doi.org/10.1039/c9ta01535c
Garlyyev, B., Kratzl, K., Rück, M., Michalička, J., Fichtner, J., Macak, J.M., et al. (2019) Optimizing the Size of Platinum Nanoparticles for Enhanced Mass Activity in the Electrochemical Oxygen Reduction Reaction. Angewandte Chemie International Edition, 58, 9596-9600. >https://doi.org/10.1002/anie.201904492
Sun, Y., Li, Y., Qin, Y., Wang, L. and Guo, S. (2019) Interfacial Engineering in PtNiCo/NiCoS Nanowires for Enhanced Electrocatalysis and Electroanalysis. Chemistry—A European Journal, 26, 4032-4038. >https://doi.org/10.1002/chem.201904473
Li, T., Qi, C., Lu, X., Tu, F., Li, Z., Jiao, C., et al. (2023) A Low-Cost Sulfur-Loading Material Based on the Modification of Ketjen Black for Rechargeable Lithium-Sulfur Battery. Journal of Electroanalytical Chemistry, 940, Article 117370. >https://doi.org/10.1016/j.jelechem.2023.117370
Baletto, F. and Ferrando, R. (2005) Structural Properties of Nanoclusters: Energetic, Thermodynamic, and Kinetic Effects. Reviews of Modern Physics, 77, 371-423. >https://doi.org/10.1103/revmodphys.77.371
Kang, X., Li, Y., Zhu, M. and Jin, R. (2020) Atomically Precise Alloy Nanoclusters: Syntheses, Structures, and Properties. Chemical Society Reviews, 49, 6443-6514. >https://doi.org/10.1039/c9cs00633h
Li, J., Sharma, S., Liu, X., Pan, Y., Spendelow, J.S., Chi, M., et al. (2019) Hard-Magnet L1
0-CoPt Nanoparticles Advance Fuel Cell Catalysis. Joule, 3, 124-135. >https://doi.org/10.1016/j.joule.2018.09.016
Lin, H., He, S., Mao, Z., Miao, J., Xu, M. and Li, Q. (2017) Shape-Controlled Synthesis of Vanadium Diselenide. Nanotechnology, 28, Article 445603. >https://doi.org/10.1088/1361-6528/aa882c
He, S., Lin, H., Qin, L., Mao, Z., He, H., Li, Y., et al. (2017) Synthesis, Stability, and Intrinsic Photocatalytic Properties of Vanadium Diselenide. Journal of Materials Chemistry A, 5, 2163-2171. >https://doi.org/10.1039/c6ta10390a
He, Y., Hwang, S., Cullen, D.A., Uddin, M.A., Langhorst, L., Li, B., et al. (2019) Highly Active Atomically Dispersed CoN
4Fuel Cell Cathode Catalysts Derived from Surfactant-Assisted MOFs: Carbon-Shell Confinement Strategy. Energy&Environmental Science, 12, 250-260. >https://doi.org/10.1039/c8ee02694g
Avani, A.V. and Anila, E.I. (2022) Recent Advances of MoO
3Based Materials in Energy Catalysis: Applications in Hydrogen Evolution and Oxygen Evolution Reactions. International Journal of Hydrogen Energy, 47, 20475-20493. >https://doi.org/10.1016/j.ijhydene.2022.04.252
McCrory, C.C.L., Jung, S., Peters, J.C. and Jaramillo, T.F. (2013) Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society, 135, 16977-16987. >https://doi.org/10.1021/ja407115p
Bao, J., Zhang, X., Fan, B., Zhang, J., Zhou, M., Yang, W., et al. (2015) Ultrathin Spinel‐Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation. Angewandte Chemie International Edition, 54, 7399-7404. >https://doi.org/10.1002/anie.201502226