Figure 1. Transient flow velocity cloud map obtained from 643 LES on a horizontal plane with a height of z/H = 0.1--图1. 高度z/H = 0.1水平面上643 LES获得的瞬态流向速度云图--4.1. 速度与标量Figure 2. Non-dimensional velocity profile--图2. 无量纲速度剖面--
References
Chumakov, S.G. and Rutland, C.J. (2005) Dynamic Structure Subgrid‐Scale Models for Large-Eddy Simulation. International Journal for Numerical Methods in Fluids, 47, 911-923. >https://doi.org/10.1002/fld.907
Lu, H. and Porté-Agel, F. (2013) A Modulated Gradient Model for Scalar Transport in Large-Eddy Simulation of the Atmospheric Boundary Layer. Physics of Fluids, 25, Article 015110. >https://doi.org/10.1063/1.4774342
Chumakov, S. and Rutland, C.J. (2004) Dynamic Structure Models for Scalar Flux and Dissipation in Large-Eddy Simulation. AIAA Journal, 42, 1132-1139. >https://doi.org/10.2514/1.10416
Mason, P.J. and Thomson, D.J. (1992) Stochastic Backscatter in Large-Eddy Simulations of Boundary Layers. Journal of Fluid Mechanics, 242, 51-78. >https://doi.org/10.1017/s0022112092002271
Porté-AGEL, F., Meneveau, C. and Parlange, M.B. (2000) A Scale-Dependent Dynamic Model for Large-Eddy Simulation: Application to a Neutral Atmospheric Boundary Layer. Journal of Fluid Mechanics, 415, 261-284. >https://doi.org/10.1017/s0022112000008776
Smagorinsky, J. (1963) General Circulation Experiments with the Primitive Equations. Monthly Weather Review, 91, 99-164. >https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2
Lu, H., Rutland, C.J. and Smith, L.M. (2007) A priori Tests of One-Equation LES Modeling of Rotating Turbulence. Journal of Turbulence, 8, N37. >https://doi.org/10.1080/14685240701493947
Businger, J.A., Wyngaard, J.C., Izumi, Y. and Bradley, E.F. (1971) Flux-Profile Relationships in the Atmospheric Surface Layer. Journal of the Atmospheric Sciences, 28, 181-189. >https://doi.org/10.1175/1520-0469(1971)028<0181:fprita>2.0.co;2
Stull, R.B. (1988) An Introduction to Boundary Layer Meteorology. Springer.
Liu, S., Meneveau, C. and Katz, J. (1994) On the Properties of Similarity Subgrid-Scale Models as Deduced from Measurements in a Turbulent Jet. Journal of Fluid Mechanics, 275, 83-119. >https://doi.org/10.1017/s0022112094002296
Clark, R.A., Ferziger, J.H. and Reynolds, W.C. (1979) Evaluation of Subgrid-Scale Models Using an Accurately Simulated Turbulent Flow. Journal of Fluid Mechanics, 91, 1-16. >https://doi.org/10.1017/s002211207900001x
Kobayashi, H. and Shimomura, Y. (2003) Inapplicability of the Dynamic Clark Model to the Large-Eddy Simulation of Incompressible Turbulent Channel Flows. Physics of Fluids, 15, L29-L32. >https://doi.org/10.1063/1.1553756
Sagaut, P. (2001) Large-Eddy Simulation for Incompressible Flows. An Introduction. Measurement Science and Technology, 12, 1745-1746. >https://doi.org/10.1088/0957-0233/12/10/707
Porté-Agel, F., Parlange, M.B., Meneveau, C. and Eichinger, W.E. (2001) A Priori Field Study of the Subgrid-Scale Heat Fluxes and Dissipation in the Atmospheric Surface Layer. Journal of the Atmospheric Sciences, 58, 2673-2698. >https://doi.org/10.1175/1520-0469(2001)058<2673:apfsot>2.0.co;2
Okong’o, N. and Bellan, J. (2000) A priori Subgrid Analysis of Temporal Mixing Layers with Evaporating Droplets. Physics of Fluids, 12, 1573-1591. >https://doi.org/10.1063/1.870405
Lu, H., Rutland, C.J. and Smith, L.M. (2008) A posteriori Tests of One-Equation Les Modeling of Rotating Turbulence. International Journal of Modern Physics C, 19, 1949-1964. >https://doi.org/10.1142/s0129183108013394
Lu, H., Zou, C., Shao, S. and Yao, H. (2019) Large-Eddy Simulation of MILD Combustion Using Partially Stirred Reactor Approach. Proceedings of the Combustion Institute, 37, 4507-4518. >https://doi.org/10.1016/j.proci.2018.09.032
Menon, S., Yeung, P.-K. and Kim, W.-W. (1996) Effect of Subgrid Models on the Computed Interscale Energy Transfer in Isotropic Turbulence. Computers&Fluids, 25, 165-180. >https://doi.org/10.1016/0045-7930(95)00036-4
Porté-Agel, F. (2004) A Scale-Dependent Dynamic Model for Scalar Transport in Large-Eddy Simulations of the Atmospheric Boundary Layer. Boundary-Layer Meteorology, 112, 81-105. >https://doi.org/10.1023/b:boun.0000020353.03398.20
Albertson, J.D. and Parlange, M.B. (1999) Natural Integration of Scalar Fluxes from Complex Terrain. Advances in Water Resources, 23, 239-252. >https://doi.org/10.1016/s0309-1708(99)00011-1
Stoll, R. and Porté-Agel, F. (2006) Effect of Roughness on Surface Boundary Conditions for Large-Eddy Simulation. Boundary-Layer Meteorology, 118, 169-187. >https://doi.org/10.1007/s10546-005-4735-2
Stoll, R. and Porté‐Agel, F. (2006) Dynamic Subgrid‐Scale Models for Momentum and Scalar Fluxes in Large‐Eddy Simulations of Neutrally Stratified Atmospheric Boundary Layers over Heterogeneous Terrain. Water Resources Research, 42, W01409. >https://doi.org/10.1029/2005wr003989
Stoll, R. and Porté-Agel, F. (2007) Large-Eddy Simulation of the Stable Atmospheric Boundary Layer Using Dynamic Models with Different Averaging Schemes. Boundary-Layer Meteorology, 126, 1-28. >https://doi.org/10.1007/s10546-007-9207-4
Lu, H. and Porté-Agel, F. (2010) A Modulated Gradient Model for Large-Eddy Simulation: Application to a Neutral Atmospheric Boundary Layer. Physics of Fluids, 22, Article 015109. >https://doi.org/10.1063/1.3291073
Andren, A., Brown, A.R., Mason, P.J., Graf, J., Schumann, U., Moeng, C.-H. and Nieuwstadt, F.T.M. (1994) Large-Eddy Simulation of a Neutrally Stratified Boundary Layer—A Comparison of 4 Computer Codes. Quarterly Journal of the Royal Meteorological Society, 120, 1457-1484. >https://doi.org/10.1002/qj.49712052003
Kleissl, J., Meneveau, C. and Parlange, M.B. (2003) On the Magnitude and Variability of Subgrid-Scale Eddy-Diffusion Coefficients in the Atmospheric Surface Layer. Journal of the Atmospheric Sciences, 60, 2372-2388. >https://doi.org/10.1175/1520-0469(2003)060<2372:otmavo>2.0.co;2
Bou-Zeid, E., Vercauteren, N., Parlange, M.B. and Meneveau, C. (2008) Scale Dependence of Subgrid-Scale Model Coefficients: An a priori Study. Physics of Fluids, 20, Article 115106. >https://doi.org/10.1063/1.2992192
Hussaini, M.Y. and Zang, T.A. (1987) Spectral Methods in Fluid Dynamics. Annual Review of Fluid Mechanics, 19, 339-367. >https://doi.org/10.1146/annurev.fl.19.010187.002011
Kong, H., Choi, H. and Lee, J.S. (2000) Direct Numerical Simulation of Turbulent Thermal Boundary Layers. Physics of Fluids, 12, 2555-2568. >https://doi.org/10.1063/1.1287912
Von Karman, T. (1931) Mechanical Similitude and Turbulence. Technical Report Archive&Image Library.
Sullivan, P.P., McWilliams, J.C. and Moeng, C. (1994) A Subgrid-Scale Model for Large-Eddy Simulation of Planetary Boundary-Layer Flows. Boundary-Layer Meteorology, 71, 247-276. >https://doi.org/10.1007/bf00713741
Germano, M., Piomelli, U., Moin, P. and Cabot, W.H. (1991) A Dynamic Subgrid-Scale Eddy Viscosity Model. Physics of Fluids A: Fluid Dynamics, 3, 1760-1765. >https://doi.org/10.1063/1.857955
Moin, P., Squires, K., Cabot, W. and Lee, S. (1991) A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport. Physics of Fluids A: Fluid Dynamics, 3, 2746-2757. >https://doi.org/10.1063/1.858164
Kim, J. and Moin, P. (1989) Transport of Passive Scalars in a Turbulent Channel Flow. Turbulent Shear Flows 6, Toulouse, 7-9 September 1987, 85-96. >https://doi.org/10.1007/978-3-642-73948-4_9