ms Material Sciences 2160-7613 2160-7621 beplay体育官网网页版等您来挑战! 10.12677/ms.2024.148141 ms-95562 Articles 化学与材料 碳纤维布增强建筑材料性能最新进展
Recent Progress in the Performance of Carbon Fiber Cloth Reinforced Building Materials
杨宇康 孙洪军 李永涛 李泽辉 辽宁工业大学土木建筑工程学院,辽宁 锦州 07 08 2024 14 08 1270 1281 24 7 :2024 19 7 :2024 19 8 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 为了提高混凝土建筑物的结构性能,最常用的加固方法之一就是使用碳纤维布(Carbon Fiber Sheet, CFS)对其进行加固。近些年来,CFS在提高建筑物性能的研究十分丰富,CFS加固可以提高建筑物的结构性能。本文回顾了最近五年CFS对建筑产品性能提上的提升,系统总结了CFS加固对混凝土梁、板、柱的抗震、抗压、抗弯、和耐火性能提升,本综述有助于提升科研人员及从业者了解掌握最新的CFS应用,并为以后潜在的研究方向以及应用提供思路。
In order to improve the structural performance of concrete buildings, one of the most common reinforcement methods is to reinforce them with carbon fiber cloth. In recent years, the research on carbon fiber cloth in improving the performance of buildings is very rich, and carbon fiber cloth reinforcement can improve the structural performance of buildings. This paper reviews the last five years of carbon fiber cloth on the performance of building products, a systematic summary of carbon fiber cloth reinforcement of concrete beams, slabs, columns, seismic, compressive, flexural, and fire performance enhancement, this review helps to enhance the scientific researchers and practitioners to understand the grasp of the latest applications of carbon fiber cloth, and provide ideas for the future direction of the potential research as well as the application of ideas.
CFS,抗压性能,抗弯性能,抗震性能,耐火性能
Carbon Fiber Cloth
Seismic Performance Compressive Performance Bending Resistance Fire Resistance
1. 引言

中国建筑取得了巨大的成就,与此同时,其在能源消耗以及二氧化碳的排放占有着非常大的比例 [1] ,如何在保证建筑物性能同时降低能耗,同时也可以提高建筑物的环保性能是一个非常重要的问题,在建筑材料中,混凝土作为建筑物最基本的材料之一,是一种脆性材料,抗拉强度低,变形能力差,在混凝土内掺入纤维有助于提高混凝土性能 [2] ,或者在混凝土建筑物外面包覆碳纤维织物可以提高其性能,CFS作为一种环保材料,可以方便地应用建筑物,且具有成本经济、施工快捷等优点 [3] ,多年来,学者对CFS加固建筑物进行的大量的研究,并且取得丰富研究成果。例如:CFS包覆在混凝土外面有助于提升抗压强度 [4] 、抗剪性能 [5] 。并且随着碳纤布维缠绕层数增加,混凝土构件抗弯承载力逐渐增加 [6] 。CFS在提高建筑物的承载力和耐久性能 [7] 具有着非常重要的优势。除此之外,CFS在提高抗震性能 [8] 以及耐火性能 [9] 上同样具有着非常优异的表现。

在本论文中对最近五年发表的论文进行了回顾,本篇综述的内容概括如下:首先对CFS进行了介绍,随后从试验部分和模拟部分对CFS增强混凝土梁、板、柱性能进行回顾并对其进行总结,最后为CFS对建筑物以后的应用、发展方向提供了一些建议。为以后CFS对泡沫混凝土、可再生混凝土等装配式轻质复合墙板的性能提升提供了思路。

2. 碳纤维布介绍

外部粘合纤维增强聚合物(Fiber Reinforced Polymer, FRP)的修复技术由于其易于应用、优越的机械特性、耐腐蚀性以及高强度重量比和刚度重量比而成为最常用的修复技术之一 [10] ,FRP可以提高结构的耐久性和力学性能 [11] 。碳纤维增强复合材料(Carbon Fiber Reinforced Polymer, CFRP)是FRP的一种,CFRP在建筑中比任何一种成分材料都要好,它将高强度和高刚度的结构纤维与轻质和耐环境的聚合物结合在一起,形成了具有机械和耐用性能的复合材料 [12] ,广泛的应用在建筑加固领域。CFRP加固位置主要分为建筑物内侧与外侧,其中常见加固位置是建筑物的外侧。常用的宽度有50 mm、100 mm、200 mm、400 mm。按照CFS原丝不同,将其分类如下 图1

3. 试验部分 3.1. 抗震性能

混凝土建筑物抗震试验方法包括:有轴向压力试验 [13] [14] 、无轴向压力试验 [15] 和拟静力试验 [16] [17] 。不同的试件要根据具体的情况选择抗震试验。对试件施加侧向循环荷载,分析其滞回曲线、骨架曲线、延性系数、能量耗散能力、刚度退化等。最后根据试验结果建立试件的恢复力模型和荷载–应变图形可以帮助我们更好的分析其抗震性能( 图2 )。

Figure 1. Carbon fiber fabric classification--图1. CFS分类-- Figure 2. Resilience model [18]--图2. 恢复力模型[18]--

CFS和角钢复合加固优于单一加固对混凝土柱抗震性能提升 [8] 。同时CFS和钢复合加固的超高性能混凝土柱具有良好的自定心能力和耗能性能 [19] 。并且钢-CFS混合钢筋混凝土框架与钢–混凝土框架相比,具有优良的震后可修复性、相当的滞回耗能能力和合理的强度退化 [20] 。CFS网格加固的墙与传统的RC剪力墙相比,有更高的抗剪能力,包括更大的横向位移、承载能力、应变和更少的残余变形 [21] 。并且外置CFS格栅剪力墙的承载力比中心置CFS格栅剪力墙的承载力高,水平布置的CFS网格显著降低了变形集中,改善了混凝土约束 [22] 。同样的CFS的包覆可以提高混凝土薄壁钢管柱–基础连接的抗震性能 [13] 。EL-Mandouh等 [23] 研究CFS加固开孔的板、柱连接的抗震性能。发现:CFS加固后的加筋板极限承载力和耗能能力都得到了提高,且延性比均有所降低。使用CFS加固节点,可以提高其抗震性能 [24] - [26] 。具体总结如下 表1

<xref></xref>Table 1. Carbon fiber cloth for node reinforcement summaryTable 1. Carbon fiber cloth for node reinforcement summary 表1. CFS对节点加固总结
加固部位

试验方式

性能提升

参考文献

地震缺陷RC梁柱节点

恒定的轴向和反向循环横向荷载下

显著改善节点的抗震性能

[24]

缺陷的钢筋混凝土梁柱节点

恒定的轴向和反向循环横向荷载下

强度、延性、耗能能力到提高

[25]

钢–混凝土组合框架节点

恒定的轴向和反向循环横向荷载下

延性、承载力和耗能能力得到提高

[26]

四周包裹CFS有效提高提高屈服强度和开裂尺寸 [15] 。CFS包层可以提供环向约束,并通过减轻混凝土剥落来改善抗震性能 [27] 。而且采用CFS环向加固,试件的抗弯能力、变形能力、峰值荷载、峰值位移得到了提高,延展性降低。增加CFS纵向层数有效提高试件的耗能能力 [14] 。此外CFS条间距越小的试件耗散能力越好。轴压比越高的试件,CFS条的加固效果越显著,CFS条间距对截线刚度演化的约束作用越明显 [28] 。另外CFS护套可以提高锈蚀桥柱的耗能、变形和延性。同时CFS夹套应与其他措施配合使用,提高其抗侧强度和延性能力 [17] 。并且CFS对锈蚀20%的钢筋混凝土柱延性和吸能值等抗震性能均有所提升上 [16] 。Sheng Peng等 [29] 得出:CFS加固矩形钢管框架柱可以提高其承载力、刚度、延性、耗能能力和抗震性能。特别在震后,使用一定的加固措施,加固在地震中损坏建筑物可以使其恢复抗震性能 [30] - [32] ( 表2 )。

<xref></xref>Table 2. Summary of repairing buildings after earthquake with carbon fiber clothTable 2. Summary of repairing buildings after earthquake with carbon fiber cloth 表2. CFS修复震后建筑物总结
修复的试件

修复方法

修复效果

参考文献

钢–混凝土组合墙体

更换受弯钢筋和采用适当的CFS方案

完全恢复受损墙体的抗震性能

[30]

预制节段桥柱

CFS包层 + 粘性钢胶

可以恢复或提高试件抗损伤能力、侧向强度和耗能能力的主要抗震能力。

[31]

钢筋混凝土方柱

CFS外部约束

CFS围护加固可以提高在强度、耗能能力和延性方面修复不当的柱的抗震性能。

[32]

3.2. 抗压性能

抗压性能是建筑物基本的力学性能之一,其试验包括偏心和轴压试验如 图3 图4 所示 [33] [34] ,其中偏心试验包括:大偏心和小偏心两类。通过分析试件的破坏形态、荷载–位移关系曲线、应力–应变关系曲线等对其抗压性能进行评估。该节回顾最近5年的文献,CFS对混凝土试件抗压性能提升的试验种类繁多,CFS提高了混凝土柱的承载能力、强度和延性 [35] 。Qiang Wang等 [36] 通过用预应力CFS增强混凝土方柱的新方法加固混凝土柱,使其抗压能力提高80%以上。Chun-Ling Lu [37] 等提出了一种预应力CFS快速加固钢筋混凝土方柱的新方法,得出:预应力程度越大,对核心混凝土施加的侧向变形约束越强,承载力和延性越好。增加CFS的预应力程度比增加其配筋范围更有效。

Yuhong Yan [38] 等研究高强CFS网格对混凝土柱抗压性能的影响,通过与未加固试件进行对比,加固后的柱承载力有了较好的提高,并且具有较好的延性。Yansheng Du [39] 等通过研究在中等长细比下CFS对矩形钢管混凝土柱的抗压性能提升,得出了:CFS的水平约束提高了试件的屈服荷载、峰值荷载、承载力和延性。并且CFS对矩形柱承载力的提高大于方形柱。Sivasankar等 [40] 研究不同宽度CFS胶条对试件抗压强度的影响,结果表明:50 mm宽度胶条包裹试样的抗压强度优于30 mm宽度包裹试样的抗压强度。Liang Liu等 [41] 得出:随着龄期增加,CFS包覆混凝土在室温下抗压强度逐渐增加。除此之外,本文对CFS加固混凝土建筑物抗压性能提升进行一定总结 [42] - [46] ,如下 表3 所示:

Figure 3. Centric loading test device [33]--图3. 偏心加载试验装置[33]-- Figure 4. Axial loading test device [34]--图4. 轴心加载试验装置[34]-- <xref></xref>Table 3. Summary of improvement of compressive resistance performance of carbon fiber cloth WrappingTable 3. Summary of improvement of compressive resistance performance of carbon fiber cloth Wrapping 表3. CFS包裹对抗压性能提升总结
试验试件

试验方法

结论

参考文献

混凝土圆柱体

轴心加载试验

在一定CFS包裹范围内,随着CFS包覆层数的增加,混凝土抗压强度得到提高

[42]

混凝土方形柱

轴心加载试验

CFS层数从1层增加到2层,抗压强度增加近似成比例

[43]

腐蚀混凝土柱性

轴心加载试验

CFS两层缠绕比单层缠绕强度和应变增量效果更加显著

[44]

方形海水海砂混凝土柱

轴心加载试验

在相同的CFS体积比下,当CFS厚度增加一倍时,极限强度和应变的提高幅度不明显

[45]

混凝土圆柱体

轴心加载试验

CFS完全约束优于CFS局部约束、水平条优于螺旋条

[46]

3.3. 抗弯性能

抗弯试验是研究建筑物抗弯性能及破坏模式的重要方法。通过分析试验的失效模式、荷载–位移和应力–应变曲线等,对其抗弯性能评估。目前常用的弯曲试验包括:三点弯曲试验、四点弯曲试验、三是六点弯曲试验。其中使用较多的是三点弯曲试验和四点弯曲试验。不同弯曲试验装置的如 图5 ~ 7 所示 [47] - [49] 。近些年来,研究人员对CFS加固建筑物进行了大量的试验。并取得了丰富的研究成果。经碳纤维织物增强的杨和桉树复合胶合板抗弯性能优于纯杨木和桉木胶合板 [50] 。并且CFS对钢筋混凝土柱抗弯强度的影响大于玻璃纤维布布对钢筋混凝土柱抗弯强度的影响 [16] 。而且CFS环向加固可以提高抗弯能力 [14] 。此外碳纤维织物可以有效增强试件抗弯刚度,提高试件抗弯能力,碳纤维织物与纤维增强混凝土的综合使用可使试件具有优异的抗弯性能 [51] 。并且随着纤维体积含量的增加,初裂载荷和后裂载荷以及弯曲韧性均显著增加。使用短纤维后,织物增强试样的首次裂纹载荷得到提高了 [52]

Figure 5. Three-point bending test [47]--图5. 三点弯曲试验[47]-- Figure 6. Four-point bending test [48]--图6. 四点弯曲试验[48]-- Figure 7. Six-point bending test [49]--图7. 六点弯曲试验[49]--

Al-Shamayleh等 [53] 通过研究外粘接CFS对钢筋混凝土梁抗弯性影响,对试验结果进行分析研究得出:外粘接CFS显著提高了梁抗弯强度。并且提高抗弯强度的效率随着与所用混凝土抗压强度呈反比例关系,在对梁抗弯强度提升方面:半u型包箍优于叠层、2 m CFS条优于1 m CFS条加固。Yansheng Du等 [54] 对不同CFS包覆方案下方形高强钢管混凝土梁的抗弯性进行分析,得出了:对于混凝土强度为128.2 MPa的试件,全方案优于底部方案和半方案对梁的极限弯矩承载力提升。Guo-Chang Li等 [55] 提出了一种在构件内包覆工字CFS新型组合结构,并发现构件内加装工字CFS显著提高了组合构件的承载能力。纵向CFS对提高试件抗弯性能作用非常大。环形CFS对提高试件抗弯能力没有贡献。Jialing Ou等 [6] 证明了:随着加固CFS层数增加,试件抗弯承载力逐渐增加。Rashid等 [56] 研究在不同预应力水平下CFS加固混凝土梁的抗弯性能,对结果进行分析发现:随着预应力水平的提高,极限荷载和CFS利用率均呈增加趋势,破坏模式也以弯曲–破碎为主。且40%的预应力水平为最优预应力水平。Yuhong Yan [57] 等研究CFS网格修复的预损伤RC梁的抗弯性能。得出:经修复后,梁的抗弯承载力提高,并且在持续荷载下修复的试件,抗弯刚度的增强。

3.4. 耐火性能

火灾是造成建筑物破坏的严重灾害之一,建筑物的耐火性能不仅关系到建筑物本身的安全,还关系到人员的生命安全。CFS在提高建筑物的耐火性能具有着非常重要的优势。CFS加固不仅能显著提高高温作用下试件的粘结强度,而且能使试件的破坏模式由脆性破坏转变为延性破坏 [58] 。使用外部或内部CFS加固热损伤RC梁可显著改善其性能 [59] 。CFS可以有效地用作高温下钢筋混凝土梁的内部剪切钢筋 [60] 。用CFS包裹混凝土,即使在300℃的高温条件下,也能提高混凝土的强度,但在400℃时,由于脱骨导致强度下降 [12] 。Zhuolin Wang等 [61] 研究在不同高温下,环氧树脂和水泥粘结CFS与混凝土界面的剩余粘结性能。得出:在相同温度下,水泥粘结CFS比环氧树脂粘结CFS加固的混凝土梁的峰值荷载至少高一半。

随着社会科技的发展,新的技术在提高建筑物耐火性能上得到广泛的应用。Altunişik等 [62] 通过研究新隔热系统对CFS包裹混凝土试件的保护性能,暴露200℃后,CFS包裹试件的抗压强度损失低于未保温试件低。但是在暴露400℃后,CFS包裹试件抗压强度、强度损失均得到大幅度降低。Wang-Wei Liu等 [63] 对TRE体系加固的火灾损伤方柱轴压性能进行了验证,发现:使用双层CFS加固火损柱能够显著提高火灾损伤的RC柱的承载能力。Abadel等 [10] 研究不同加固方案修复由于高温暴露而损坏的圆形和方形RC柱中的性能。研究表明:单向CFS与NSM钢筋组合加固和仅采用单向CFS加固都能有效地恢复和超过热损伤RC柱的初始承载能力。然而组合加固比单独加固在恢复后置柱的初始刚度方面更有效。且与方形柱相比,圆形柱的初始刚度恢复更为明显。Guruprasad等 [64] 在高温和不同时间下,使用地聚合物砂浆和陶瓷纤维毯对未损伤和热损伤混凝土的保温性能进行了CFS修复,结果表明:陶瓷纤维毯对混凝土和CFS的保护效果更好。

4. 模拟部分

在试验基础上,使用有限元软件对结果进行对比分析,有助于我们更好的分析试验结果和开展后期的工作。目前常用的有限元软件包括ANSYS、ABAQUS等。Yansheng Du等 [65] 建立FRP约束高强矩形CFST柱的恢复力模型。并且建立的恢复力模型能较准确地预测荷载–位移曲线。Yu-Ye Xu等 [66] 对FRP加固短柱抗剪承载力计算公式进行了修正,并且修正后的方程可以预测CFS加固试件的抗剪能力。Nematzadeh等 [67] 提出了一种预测CFS约束后加热钢纤维混凝土性能的应力–应变模型,该模型能够准确预测CFS约束后加热钢纤维混凝土的轴向应力–轴向应变和轴向应力–侧应变关系。Kun Dong等 [11] 提出了一种有限元模型来预测CFS保温RC梁的热响应和结构响应。并且有限元参数分析结果进一步表明,不同厚度和导热系数的保温方案对加固梁的防火性能有显著影响。

Al-Mekhlafi等 [68] 通过使用有限元软件ABAQUS对CFS约束下不锈钢钢管混凝土短柱偏心受压性能试验中试验结果进行对比验证,得到CFS包绕有效提高了CFS粘结短柱的极限强度。同样的,Sathwik等 [69] 使用ABAQUS对不同预加载条件下CFS包绕混凝土圆柱试件抗压性能的试验与数值研究中。得出单层CFS包覆的试件强度比未包覆的试件平均提高一半。Yanlei Wang等 [70] 根据CFS约束短柱的单调轴压性能中试验结果建立极限轴向承载力预测模型,并且该模型与试验结果吻合较好 [71] 。Junlong Yang等 [71] 提出的新应力–应变模型,是预测CFS部分包裹混凝土柱抗压强度和极限应变最准确的模型。Guo-Chang Li等 [55] 利用ABAQUS软件建立了构件的非线性有限元模型,并使用该模型与试验数据的对比进行了验证。Jialing Ou等 [6] 建立的纤维单元模型能够较好地模拟构件的弯矩–挠度曲线,并且该模型能够准确地预测构件的抗弯承载力、刚度和延性。

5. 总结

CFS加固不同的梁、柱节点,可以提高其强度、延性、耗能能力等抗震性能,并且对震后损坏的试件,采取例如:更换受弯钢筋和采用适当的CFS方案、CFS包层 + 粘性钢胶、CFS外部约束等可以恢复其抗震性能。在一定CFS包裹范围内,随着CFS包覆层数的增加,混凝土抗压强度得到提高,其中一层包覆与未加固试件相比,抗压强度增幅最大。CFS对抗压强度提升上:50要优于30 mm、完全优于局部约束、水平优于螺旋条、全包优于条包方案。CFS环向加固可以提高抗弯能力,并且提高抗弯强度的效率随着与所用混凝土抗压强度呈反比例关系,在对梁抗弯强度提升方面:半u型包箍加固优于叠层、2 m CFS条优于1 m CFS条、全方案优于底部方案和半方案。目前研究人员,主要研究CFS包覆面积、位置、以及不同的加固体系在高温下加固建筑物耐火性能。

6. 未来发展趋势

CFS在增强建筑物性能上具有着非常重要的优势,并且CFS在建筑上应用还在不断的发展。目前大部分在试验的基础上使用有限元软件对试验结果进行对比验证,有助于我们更直观的了解破坏机理。近年来,泡沫混凝土和可再生混凝土材料,这些相对环保建筑材料得到大力发展,同时,CFS在这些建筑物有着广泛的应用空间。对目前研究不足以及未来发展方向。可以总结为以下几点:

References 中国建筑能耗与碳排放研究报告(2022年) [J]. 建筑, 2023(2): 57-69. Liu, B., Zhou, J., Wen, X., Hu, X. and Deng, Z. (2020) Mechanical Properties and Constitutive Model of Carbon Fiber Reinforced Coral Concrete under Uniaxial Compression. Construction and Building Materials, 263, Article ID: 120649. >https://doi.org/10.1016/j.conbuildmat.2020.120649 Dundar, C., Erturkmen, D. and Tokgoz, S. (2015) Studies on Carbon Fiber Polymer Confined Slender Plain and Steel Fiber Reinforced Concrete Columns. Engineering Structures, 102, 31-39. >https://doi.org/10.1016/j.engstruct.2015.08.011 Carrillo, J., Valencia-Mina, W. and Bojórquez, E. (2020) Compressive Performance of Square and Low-Strength Concrete Columns Retrofitted with Externally-Bonded CFRP. Materials Today Communications, 23, Article ID: 100874. >https://doi.org/10.1016/j.mtcomm.2019.100874 Mohammed, A.A. and Hagi Fattah, O.A. (2020) Investigation of Parameters Affecting Direct Shear Behavior of Concrete Strengthened with CFRP Laminate. Journal of Building Engineering, 32, Article ID: 101480. >https://doi.org/10.1016/j.jobe.2020.101480 Ou, J., Shao, Y., Huang, C., Chen, Y. and Bi, X. (2023) Flexural Behavior of Circular Concrete Filled Steel Tubular Members Strengthened by CFRP Sheets. Structures, 55, 201-214. >https://doi.org/10.1016/j.istruc.2023.06.031 Chen, Z., Qin, W., Liang, Y. and Zhou, J. (2023) Axial Compressive Performance of Seawater Sea Sand Concrete-Filled CFRP-Stainless Steel Tube Short Columns. Construction and Building Materials, 369, Article ID: 130501. >https://doi.org/10.1016/j.conbuildmat.2023.130501 刘灿. CFS和角钢加固的混凝土柱抗震性能研究[J]. 山东农业大学学报(自然科学版), 2021, 52(3): 515-520. 徐明, 肖德后, 陈忠范. 碳纤维加固钢筋混凝土柱耐火性能试验研究[J]. 防灾减灾工程学报, 2013, 33(4): 369-374+388. Abadel, A.A., Khan, M.I. and Masmoudi, R. (2021) Axial Capacity and Stiffness of Post-Heated Circular and Square Columns Strengthened with Carbon Fiber Reinforced Polymer Jackets. Structures, 33, 2599-2610. >https://doi.org/10.1016/j.istruc.2021.05.081 Dong, K., Hu, K., Gao, W. and Yang, S. (2023) Fire Endurance Tests of CFRP-Strengthened RC Beams with Different Insulation Schemes. Structures, 56, Article ID: 104887. >https://doi.org/10.1016/j.istruc.2023.104887 Reddy, K.H.K., Nerella, R. and Madduru, S.R.C. (2020) Different Temperature Effects on CFRP Wrapped Concrete. Materials Today: Proceedings, 27, 1127-1131. >https://doi.org/10.1016/j.matpr.2020.01.582 Xu, T., Zhang, S., Liu, J., Wang, X. and Guo, Y. (2022) Seismic Behavior of Carbon Fiber Reinforced Polymer Confined Concrete Filled Thin-Walled Steel Tube Column-Foundation Connection. Composite Structures, 279, Article ID: 114804. >https://doi.org/10.1016/j.compstruct.2021.114804 Zhang, Y., Wei, Y., Li, B., Wang, G. and Huang, L. (2022) A Novel Seawater and Sea Sand Concrete-Filled CFRP-Carbon Steel Composite Tube Column: Seismic Behavior and Finite Element Analysis. Engineering Structures, 270, Article ID: 114872. >https://doi.org/10.1016/j.engstruct.2022.114872 刘灿. 基于CFS和角钢复合加固损伤混凝土柱抗震试验设计研究[J]. 混凝土, 2021(2): 157-160. Karimipour, A. and Edalati, M. (2021) Retrofitting of the Corroded Reinforced Concrete Columns with CFRP and GFRP Fabrics under Different Corrosion Levels. Engineering Structures, 228, Article ID: 111523. >https://doi.org/10.1016/j.engstruct.2020.111523 Jia, J., Zhao, L., Wu, S., Wang, X., Bai, Y. and Wei, Y. (2020) Experimental Investigation on the Seismic Performance of Low-Level Corroded and Retrofitted Reinforced Concrete Bridge Columns with CFRP Fabric. Engineering Structures, 209, Article ID: 110225. >https://doi.org/10.1016/j.engstruct.2020.110225 Li, Y., Xue, W., Yun, Y. and Ding, H. (2022) Reversed Cyclic Loading Tests on Precast Concrete Sandwich Shear Walls under Different Axial Compression Ratios. Journal of Building Engineering, 54, Article ID: 104619. >https://doi.org/10.1016/j.jobe.2022.104619 Hu, R., Fang, Z., Benmokrane, B. and Fang, W. (2021) Cyclic Behaviour of UHPC Columns with Hybrid CFRP/Steel Reinforcement Bars. Engineering Structures, 238, Article ID: 112245. >https://doi.org/10.1016/j.engstruct.2021.112245 Song, S., Wang, G., Min, X., Duan, N. and Tu, Y. (2021) Experimental Study on Cyclic Response of Concrete Frames Reinforced by Steel-CFRP Hybrid Reinforcement. Journal of Building Engineering, 34, Article ID: 101937. >https://doi.org/10.1016/j.jobe.2020.101937 Huang, Z., Shen, J., Lin, H., Song, X. and Yao, Y. (2020) Shear Behavior of Concrete Shear Walls with CFRP Grids under Lateral Cyclic Loading. Engineering Structures, 211, Article ID: 110422. >https://doi.org/10.1016/j.engstruct.2020.110422 Song, X., Huang, Z., Shen, J. and Yao, Y. (2020) Experimental Study on Cyclic Behavior of Hybrid CFRP Grids-Steel Shear Walls. Structures, 28, 496-511. >https://doi.org/10.1016/j.istruc.2020.08.063 A. EL-Mandouh, M., Hu, J. and Abd El-Maula, A.S. (2022) Seismic Behavior of RC Slab-Column Connection with Openings Strengthened with CFRP. Case Studies in Construction Materials, 17, e01517. >https://doi.org/10.1016/j.cscm.2022.e01517 Wang, G., Dai, J. and Bai, Y. (2019) Seismic Retrofit of Exterior RC Beam-Column Joints with Bonded CFRP Reinforcement: An Experimental Study. Composite Structures, 224, Article ID: 111018. >https://doi.org/10.1016/j.compstruct.2019.111018 Ilia, E. and Mostofinejad, D. (2019) Seismic Retrofit of Reinforced Concrete Strong Beam-Weak Column Joints Using EBROG Method Combined with CFRP Anchorage System. Engineering Structures, 194, 300-319. >https://doi.org/10.1016/j.engstruct.2019.05.070 Xu, C., Peng, S., Liu, X., Wang, C. and Xu, Q. (2020) Analysis of the Seismic Behavior of CFRP-Strengthened Seismic-Damaged Composite Steel-Concrete Frame Joints. Journal of Building Engineering, 28, Article ID: 101057. >https://doi.org/10.1016/j.jobe.2019.101057 Wang, H., Xing, G., Zhao, J. and Wen, F. (2022) Seismic Behavior of RC Columns Strengthened with Near-Surface-Mounted Aluminum Alloy Bars and CFRP Wraps. Engineering Structures, 268, Article ID: 114742. >https://doi.org/10.1016/j.engstruct.2022.114742 Yu, F., Yin, W., Cheng, A., Vu, Q., Wang, S. and Kong, Z. (2021) Seismic Behavior of PVC-CFRP Confined Reinforced Concrete Columns: An Experimental Study. Structures, 32, 313-328. >https://doi.org/10.1016/j.istruc.2021.03.003 Peng, S. and Xiong, Z. (2022) Experimental Study on the Seismic Behavior of CFRP-Strengthened Seismic-Damaged Recycled Aggregate Concrete-Filled Rectangular Steel Tube Frame Columns. Journal of Building Engineering, 45, Article ID: 103422. >https://doi.org/10.1016/j.jobe.2021.103422 Sun, F., Pang, S., Zhang, Z., Fu, F. and Qian, K. (2020) Retrofitting Seismically Damaged Steel Sections Encased Concrete Composite Walls Using Externally Bonded CFRP Strips. Composite Structures, 236, Article ID: 111927. >https://doi.org/10.1016/j.compstruct.2020.111927 Zhang, Y., Tabandeh, A., Ma, Y. and Gardoni, P. (2020) Seismic Performance of Precast Segmental Bridge Columns Repaired with CFRP Wraps. Composite Structures, 243, Article ID: 112218. >https://doi.org/10.1016/j.compstruct.2020.112218 Elci, H. (2020) Seismic Strengthening of Improperly Repaired Reinforced Concrete Columns Using CFRP Confinement. Structures, 28, 266-275. >https://doi.org/10.1016/j.istruc.2020.08.072 马立成, 史庆轩, 王朋, 等. 高强钢筋混凝土柱小偏心受压性能试验研究[J]. 工程力学, 2024, 41(3): 82-90. 王威, 甄国凯, 权超超, 等. 竖向梯形波纹腹板PEC柱轴压性能研究[J]. 工程科学与技术, 2022, 54(4): 29-38. Nematzadeh, M., Mousavimehr, M., Shayanfar, J. and Omidalizadeh, M. (2021) Eccentric Compressive Behavior of Steel Fiber-Reinforced RC Columns Strengthened with CFRP Wraps: Experimental Investigation and Analytical Modeling. Engineering Structures, 226, Article ID: 111389. >https://doi.org/10.1016/j.engstruct.2020.111389 Wang, Q., lu, C., Zhu, W., Fu, F. and Qian, K. (2020) Axial Compressive Capacity of RC Square Columns Strengthened by Prestressed CFRP with RPC Pads. Composite Structures, 242, Article ID: 112153. >https://doi.org/10.1016/j.compstruct.2020.112153 Lu, C., Xiao, Y., Wang, Q. and Zhu, W. (2020) Study on Axial Compressive Properties of RC Square Columns Strengthened with Prestressed CFRP Sheets. Structures, 27, 2011-2024. >https://doi.org/10.1016/j.istruc.2020.07.033 Yan, Y., Liang, H., Lu, Y. and Huang, Y. (2021) Behaviour of Concrete-Filled Steel-Tube Columns Strengthened with High-Strength CFRP Textile Grid-Reinforced High-Ductility Engineered Cementitious Composites. Construction and Building Materials, 269, Article ID: 121283. >https://doi.org/10.1016/j.conbuildmat.2020.121283 Du, Y., Zhang, Y., Chen, Z., Yan, J. and Zheng, Z. (2021) Axial Compressive Performance of CFRP Confined Rectangular CFST Columns Using High-Strength Materials with Moderate Slenderness. Construction and Building Materials, 299, Article ID: 123912. >https://doi.org/10.1016/j.conbuildmat.2021.123912 Sivasankar, S., Ponraj Sankar, L., Praveen Kumar, A. and Shunmugasundaram, M. (2020) Strengthening of Square Hollow Steel Sections Using Carbon Fibre Reinforced Polymer Strips Subjected by Compression. Materials Today: Proceedings, 27, 877-882. >https://doi.org/10.1016/j.matpr.2020.01.123 Liu, L. and Yang, H. (2020) High Mechanical Performance of Reinforced Concrete Wrapped with Carbon-Fiber Polymer and Electrochemical Corrosion Behavior of Carbon Steel in the Concrete. International Journal of Electrochemical Science, 15, 9658-9668. >https://doi.org/10.20964/2020.10.55 Amran, Y.H.M., Alyousef, R., Alabduljabbar, H., Alaskar, A. and Alrshoudi, F. (2020) Properties and Water Penetration of Structural Concrete Wrapped with CFRP. Results in Engineering, 5, Article ID: 100094. >https://doi.org/10.1016/j.rineng.2019.100094 Aules, W.A. and Raoof, S.M. (2021) Effect of Shape Modification on the Confinement Effectiveness of CFRP Strengthened Square Concrete Compression Members: Experimental Study. Case Studies in Construction Materials, 15, e00679. >https://doi.org/10.1016/j.cscm.2021.e00679 Radhi, M.S., Gorgis, I.N. and Hassan, M.S. (2021) Analytical Analysis of Design-Oriented Models for Forecasting the Performance of CFRP-Confined Corrosion-Affected Concrete Columns. Construction and Building Materials, 313, Article ID: 125491. >https://doi.org/10.1016/j.conbuildmat.2021.125491 Yang, J., Lu, S., Wang, J. and Wang, Z. (2020) Behavior of CFRP Partially Wrapped Square Seawater Sea-Sand Concrete Columns under Axial Compression. Engineering Structures, 222, Article ID: 111119. >https://doi.org/10.1016/j.engstruct.2020.111119 Ismail, R., Rashid, R.S.M., Chan, W.C., Jaafar, M.S. and Hejazi, F. (2019) Compressive Behavior of Concrete Cylinder Fully and Partially Confined by Carbon Fibre-Reinforced Polymer (CFRP). Construction and Building Materials, 201, 196-206. >https://doi.org/10.1016/j.conbuildmat.2018.12.095 Askar, M.K., Askar, L.K., Al-Kamaki, Y.S.S. and Ferhadi, R. (2023) Effects of Chopped CFRP Fiber on Mechanical Properties of Concrete. Heliyon, 9, e13832. >https://doi.org/10.1016/j.heliyon.2023.e13832 Castillo-Lara, J.F., Flores-Johnson, E.A., Valadez-Gonzalez, A., Herrera-Franco, P.J., Carrillo, J.G., Gonzalez-Chi, P.I., et al. (2021) Mechanical Behaviour of Composite Sandwich Panels with Foamed Concrete Core Reinforced with Natural Fibre in Four-Point Bending. Thin-Walled Structures, 169, Article ID: 108457. >https://doi.org/10.1016/j.tws.2021.108457 Al-Rubaye, S., Sorensen, T.J. and M. Maguire. (2017) Investigating Composite Action at Ultimate for Commercial Investigating Composite Action at Ultimate for Commercial Sandwich Panel Composite Connectors. Brigham Young University, Provo. Liu, Y., Guan, M., Chen, X., Zhang, Y. and Zhou, M. (2019) Flexural Properties Evaluation of Carbon-Fiber Fabric Reinforced Poplar/Eucalyptus Composite Plywood Formwork. Composite Structures, 224, Article ID: 111073. >https://doi.org/10.1016/j.compstruct.2019.111073 Cheng, S., He, H., Cheng, Y. and Sun, H. (2023) Flexural Behavior of RC Beams Enhanced with Carbon Textile and Fiber Reinforced Concrete. Journal of Building Engineering, 70, Article ID: 106454. >https://doi.org/10.1016/j.jobe.2023.106454 Halvaei, M., Jamshidi, M., Latifi, M. and Ejtemaei, M. (2020) Effects of Volume Fraction and Length of Carbon Short Fibers on Flexural Properties of Carbon Textile Reinforced Engineered Cementitious Composites (ECCS); an Experimental and Computational Study. Construction and Building Materials, 245, Article ID: 118394. >https://doi.org/10.1016/j.conbuildmat.2020.118394 Al-Shamayleh, R., Al-Saoud, H., Abdel-Jaber, M. and Alqam, M. (2022) Shear and Flexural Strengthening of Reinforced Concrete Beams with Variable Compressive Strength Values Using Externally Bonded Carbon Fiber Plates. Results in Engineering, 14, Article ID: 100427. >https://doi.org/10.1016/j.rineng.2022.100427 Du, Y., Gao, D., Chen, Z., Deng, X. and Qian, K. (2023) Experimental Study on the Flexural Behavior of Square High-Strength Concrete-Filled Steel Tube Beams with Different CFRP Wrapping Schemes. Composite Structures, 304, Article ID: 116325. >https://doi.org/10.1016/j.compstruct.2022.116325 Li, G., Zhang, M., Fang, C., Li, X. and Shen, M. (2023) Numerical Investigations on Flexural Behavior of I-Shaped CFRP-Encased High-Strength Square Concrete Filled Steel Tubes. Structures, 48, 681-693. >https://doi.org/10.1016/j.istruc.2022.12.112 Rashid, K., Li, X., Deng, J., Xie, Y., Wang, Y. and Chen, S. (2019) Experimental and Analytical Study on the Flexural Performance of CFRP-Strengthened RC Beams at Various Pre-Stressing Levels. Composite Structures, 227, Article ID: 111323. >https://doi.org/10.1016/j.compstruct.2019.111323 Yan, Y., Lu, Y., Zhao, Q. and Li, S. (2023) Flexural Behavior of Pre-Damaged and Repaired Reinforced Concrete Beams with Carbon Fiber Reinforced Polymer Grid and Engineered Cementitious Composite. Engineering Structures, 277, Article ID: 115390. >https://doi.org/10.1016/j.engstruct.2022.115390 Akbarzadeh Bengar, H., Hosseinpour, M. and Celikag, M. (2020) Influence of CFRP Confinement on Bond Behavior of Steel Deformed Bar Embedded in Concrete Exposed to High Temperature. Structures, 24, 240-252. >https://doi.org/10.1016/j.istruc.2020.01.017 Al-Rousan, R.Z. (2023) Impact of Internal CFRP Strips on the Flexural Behavior of Heat-Damaged Reinforced Concrete Beams. Heliyon, 9, e17145. >https://doi.org/10.1016/j.heliyon.2023.e17145 Al-Rousan, R.Z. (2021) Integration of CFRP Strips as an Internal Shear Reinforcement in Reinforced Concrete Beams Exposed to Elevated Temperature. Case Studies in Construction Materials, 14, e00508. >https://doi.org/10.1016/j.cscm.2021.e00508 Wang, Z., Dai, J., Wang, M., Chen, L., Zhang, F. and Xu, Q. (2021) Residual Bond Strengths of Epoxy and Cement-Bonded CFRP Reinforcements to Concrete Interfaces after Elevated Temperature Exposure. Fire Safety Journal, 124, Article ID: 103393. >https://doi.org/10.1016/j.firesaf.2021.103393 Altunişik, A.C., Akbulut, Y.E., Adanur, S., Kaya, A., Günaydin, M., Mostofi, S., et al. (2023) Evaluating the High-Temperature Endurance of FRP-Strengthened Concrete Using an Innovative Insulation System: Experimental Investigation. Journal of Building Engineering, 73, Article ID: 106444. >https://doi.org/10.1016/j.jobe.2023.106444 Liu, W., Ouyang, L., Gao, W., Liang, J., Wang, T., Song, J., et al. (2023) Repair of Fire-Damaged RC Square Columns with CFRP Textile-Reinforced ECC Matrix. Engineering Structures, 292, Article ID: 116530. >https://doi.org/10.1016/j.engstruct.2023.116530 Guruprasad, Y.K. and Ramaswamy, A. (2019) Thermal Insulation of Concrete and the Repair Material CFRP Exposed to High Temperature and Different Time Intervals. Construction and Building Materials, 205, 549-565. >https://doi.org/10.1016/j.conbuildmat.2019.01.236 Du, Y., Zhang, Y., Chen, Z., Dong, S., Deng, X. and Qian, K. (2021) Seismic Behavior of CFRP Confined Rectangular CFST Columns Using High-Strength Materials: Numerical Analysis and Restoring Force Model. Structures, 34, 4237-4253. >https://doi.org/10.1016/j.istruc.2021.10.010 Xu, Y. and Huang, J. (2020) Cyclic Performance of Corroded Reinforced Concrete Short Columns Strengthened Using Carbon Fiber-Reinforced Polymer. Construction and Building Materials, 247, Article ID: 118548. >https://doi.org/10.1016/j.conbuildmat.2020.118548 Nematzadeh, M., Hasan-Nattaj, F., Gholampour, A., Sabetifar, H. and Ngo, T.D. (2021) Strengthening of Heat-Damaged Steel Fiber-Reinforced Concrete Using CFRP Composites: Experimental Study and Analytical Modeling. Structures, 32, 1856-1870. >https://doi.org/10.1016/j.istruc.2021.03.084 Al-Mekhlafi, G.M., Al-Osta, M.A. and Sharif, A.M. (2020) Behavior of Eccentrically Loaded Concrete-Filled Stainless Steel Tubular Stub Columns Confined by CFRP Composites. Engineering Structures, 205, Article ID: 110113. >https://doi.org/10.1016/j.engstruct.2019.110113 Sathwik, M.C., Prashanth, M.H., Naik, S.C. and Satish, A. (2020) Experimental and Numerical Studies on Compressive Behaviour of CFRP Wrapped Cylindrical Concrete Specimens Subjected to Different Pre-Loading Conditions. Materials Today: Proceedings, 27, 327-335. >https://doi.org/10.1016/j.matpr.2019.11.041 Wang, Y., Cai, G., Si Larbi, A., Waldmann, D., Daniel Tsavdaridis, K. and Ran, J. (2020) Monotonic Axial Compressive Behaviour and Confinement Mechanism of Square CFRP-Steel Tube Confined Concrete. Engineering Structures, 217, Article ID: 110802. >https://doi.org/10.1016/j.engstruct.2020.110802 Yang, J., Wang, J. and Wang, Z. (2020) Axial Compressive Behavior of Partially CFRP Confined Seawater Sea-Sand Concrete in Circular Columns—Part I: Experimental Study. Composite Structures, 246, Article ID: 112373. >https://doi.org/10.1016/j.compstruct.2020.112373
Baidu
map