ojfr Open Journal of Fisheries Research 2373-1443 2373-1451 beplay体育官网网页版等您来挑战! 10.12677/ojfr.2024.113020 ojfr-95557 Articles 地球与环境 水产无脊椎动物性腺发育调控研究进展
Advances in the Control of Aquatic Invertebrates’ Gonadal Development
黄凯悦 1 陈艺蒙 1 霍忠明 1 2 秦艳杰 1 2 大连海洋大学水产与生命学院,辽宁 大连 辽宁省贝类良种繁育工程技术研究中心,辽宁 大连 30 08 2024 11 03 167 176 28 7 :2024 19 7 :2024 19 8 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 水产无脊椎动物种类繁多,是人类重要的食物来源,具有重要的生态和经济价值,研究水产无脊椎动物的性腺发育调控机制对探究其人工繁育技术、规模化养殖以及遗传育种具有重要意义。本文从类固醇激素、性别决定与分化基因的分子调控及环境方面,综述了近年来水产无脊椎动物性腺发育调控相关的研究进展,旨在为水产无脊椎动物繁殖调控提供参考。
Because of their abundance and diversity, aquatic invertebrates provide as significant food sources for humans as well as having significant ecological and commercial significance. Investigating the mechanisms governing gonadal development in aquatic invertebrates is crucial for understanding Investigating the mechanisms governing gonadal development in aquatic invertebrates is crucial for understanding artificial breeding methods, large-scale aquaculture and genetic breeding. In order to serve as a reference for future research of a similar nature, we reviewed the state of the art in this paper regarding the regulation of gonadal development in aquatic invertebrates as it relates to steroid hormones, the environment, and the molecular regulation of sex-determining and differentiating genes.
水产无脊椎动物,性腺发育,类固醇激素,基因
Aquatic Invertebrates
Gonadal Development Steroid Hormones Genes
1. 引言

水产无脊椎动物数量庞大、种类繁多,它们在水产养殖、捕捞渔业以及生态系统中具有重要作用,其繁殖能力直接影响种群数量和生物多样性。许多水产无脊椎动物,特别是牡蛎、扇贝、蛤蜊和贻贝等双壳类动物,也是人类的重要食物来源。近年来,由于过度捕捞和环境破坏等因素,导致水产无脊椎动物出现产量下降,品质降低等问题,因此研究其性腺发育调控机制对提高繁殖效率、遗传育种、优化种质资源以及保护生物多样性等方面具有重要意义。

性腺发育是一个复杂的过程,包括性腺形成、性别分化和配子发生,受到类固醇激素、基因及环境等因素调控。性别分化和生殖调控在包括人类在内的脊椎动物中研究较为系统。无脊椎动物由于缺乏下丘脑–垂体–性腺轴,其性腺发育调控与脊椎动物存在较大差别。近年来,随着分子生物学和系列组学技术的进步,对水产无脊椎动物性腺发育调控机制的研究愈发深入,本文旨在简单梳理这些研究,以期为水产无脊椎动物遗传育种、规模化养殖等提供理论依据。

2. 类固醇激素对水产无脊椎动物性腺发育的调控

类固醇激素是一种甾体,在控制各种动物群体的生殖中发挥了重要作用 [1] 。性激素是固醇激素的一种,包括雌激素、雄激素和孕激素,主要来源于动物的性腺等组织,性类固醇激素在脊椎动物中发挥着多种重要的生理作用,包括调节生长、发育、繁殖、分化、代谢和体内平衡等 [2] [3] 。无脊椎动物中,近年来逐渐发现性类固醇的存在,其主要种类包括雌二醇、睾酮和孕酮等。研究内容主要涉及各种性类固醇的含量、雌雄之间的差异、以及性类固醇含量变化与生殖发育过程的相关关系等方面 [4] - [6]

2.1. 贝类性腺发育的激素调控

在贝类研究中表明,雌二醇能够促进栉孔扇贝(Chlamys farreri)和虾夷扇贝(Patinopecten yessoensis)等贝类的卵黄蛋白基因的合成,并且在海扇贝(Placopecten magellanicus)中会影响性腺分化和配子的排放 [7] - [10] 。此外,在一些贝类不同发育阶段,已经观察到性激素的水平会发生变化。Ni等通过酶联免疫吸附法研究了福建牡蛎雌二醇-17β (E2)和睾酮(T)含量的变化,发现两种类固醇分别在雌性和雄性的性成熟过程中增加,然后在产卵后显着减少,表明E2和T可能在牡蛎性腺发育和生殖周期中有重要作用 [11] 。谢欣冉等测定虾夷扇贝性腺各发育阶段中性类固醇激素的含量,结果表明,性腺中激素含量呈现孕酮(P) > 雌醇 > 睾酮,它们分别约占激素总含量的60%、30%、10%;精巢中3种激素含量均呈显著正相关,但卵巢中仅孕酮和睾酮之间显著相关 [12] 。Ketata等在菲律宾蛤仔(Ruditapes decussatus)的繁殖周期测定其性腺中孕酮、睾酮和雌二醇的含量分别为0.18~2.46、0.04~0.38、0.01~0.24 ng/g,在两性中,孕酮和睾酮在配子发生末期均有所增加,雌二醇在雌性生殖细胞卵黄发生开始时最高 [13] 。而在栉孔扇贝的研究中,其年生殖周期过程中性腺中雌二醇和睾酮的含量分别为0.08~0.67和0.09~0.51 ng/g,栉孔扇贝卵巢中雌二醇的含量全年高于精巢,而精巢中睾酮的含量在配子发生阶段高于卵巢睾酮含量,卵巢中雌二醇的含量和精巢中睾酮的含量均随着配子发生而升高,在配子排放前达到最高值,并在配子排放后迅速下降 [14]

2.2. 甲壳动物性腺发育的激素调控

在甲壳动物中,此类研究较少,主要集中于雌激素对其性腺发育的调控。有研究表明E2在中华绒螯蟹(Eriocheir sinensis)中主要分布于卵巢的卵母细胞、卵泡细胞、细胞质以及在其卵巢发育过程的神经组织中(胸神经节和脑神经节) [15] 。同时还发现华绒螯蟹和泥蟹(Scylla paramamosain)卵巢中的E2水平会随着卵巢发育和卵母细胞成熟而显着增加 [16] [17] 。在早期研究中发现,斑节对虾中(Pandalus kessleri) E2浓度在卵黄生成高峰期上升,在性腺释放成熟卵子后下降,说明E2促进卵黄生成并加快卵巢发育的作用 [18] 。此外,睾酮对美洲龙虾(Homarus americanus)的性腺发育会具有一定的影响 [19]

2.3. 棘皮动物性腺发育的激素调控

在棘皮动物中,也已经证实有性激素的存在并参与了性腺发育的调节。Thongbuakaew等在糙海参(Holothuria scabra)的性腺中首次发现了雌二醇、黄体酮和睾酮,并证明了性激素可以通过调节卵黄素的合成来控制糙海参卵母细胞发育和卵巢成熟 [20] 。在早期研究中还发现红海星(Asterias rubens)、紫海星(Asterias vulgaris)、球海胆(Paracentrotus lividus)、海百合(Antedon mediterranea)等棘皮动物的性类固醇激素水平与生殖周期之间已经建立了相关性 [21] - [26] 。以上均表明性激素可能在水产无脊椎动物的性腺发育、生殖调控、配子发生等过程中起着重要作用。

3. 基因对水产无脊椎动物性腺发育的调控

性腺发育是一个复杂的过程,包括性腺形成、性别分化和配子发生。性别决定是性腺发育的首要步骤,决定了个体发育的方向和方式。性别分化则指未分化的性腺在性别决定的基础上进行雌性或雄性性状分化的过程 [27] 。性腺发育过程中涉及众多基因的协同作用,它们共同调控性腺细胞增殖、分化、生殖细胞成熟及卵黄合成等关键过程。目前在水产无脊椎动物中发现了一些与性别相关的关键基因,包括Dmrt家族、Foxl2、Sox、β-Catenin、Vasa、Nanos等,这些基因在性腺中呈现性别二态性的表达模式,推测参与性别分化级联反应,对性腺发育调控起重要作用。

3.1. 贝类性腺发育的基因调控

牡蛎性别分化和性腺发育相关基因研究结果发现,长牡蛎(Crassostrea gigas)中的Dmrt基因仅在性腺中表达,并通过转录组数据和qRT-PCR结果发现,Dmrt的表达量在精巢中要显著高于卵巢,认为Dmrt基因可能在长牡蛎的性别决定或雄性性腺发育中起重要作用 [28] [29] 。在长牡蛎的配子发生周期中,Cg-SoxE和Cg-β-Catenin基因在成熟的雌性性腺中的表达量最高,这两种基因表达都仅限于早期生殖细胞、精母细胞和次级卵母细胞,并可能在体细胞中表达。Cg-β-Catenin在初级卵母细胞中也有表达。这些现象表明Cg-SoxE和Cg-β-Catenin可能参与了长牡蛎早期性腺分化和性别决定 [30] 。在福建牡蛎中分离鉴定了一个编码雌激素受体(ER),认为ER可能在牡蛎性腺发育中具有重要作用 [11]

扇贝性别分化和性腺发育相关基因研究主要涉及虾夷扇贝和栉孔扇贝。在虾夷扇贝中发现Py-Nanos1和Py-Nanos2/3主要表达于性腺,Py-Nanos1定位于卵原细胞、卵母细胞和精原细胞,Py-Nanos2/3特异表达于精原细胞。结果表明,Py-Nanos具有生殖细胞特异性,可作为虾夷扇贝性腺发育过程中生殖细胞的标记物 [31] 。虾夷扇贝中有两个基因表现出性别二态性,其中FOXL2在卵巢中大量表达,DMRT1L在睾丸中大量表达。原位杂交显示,这两个基因在生殖细胞和卵泡细胞中都能检测到,可能是雌雄性腺分化的关键基因 [32] 。Liu等人研究了栉孔扇贝性腺分化过程中Foxl2的表达特征,发现Foxl2在在雌性性腺发生和成体性腺发育周期中特异性表达,表明该基因可以作为栉孔扇贝一种早期性别标记基因并可能参与了卵巢分化的调控 [33] 。梁少帅等人利用原位杂交和免疫组织化学技术,发现Cf-sox9mRNA和Cf-SOX9蛋白都存在于栉孔扇贝精巢和卵巢的所有生殖细胞中,认为其与性腺发育和配子发生过程有着密切的联系 [34]

其他贝类的研究发现,皱纹盘鲍(Haliotis discus discus)成熟性腺中存在Vasa mRNA的亚细胞定位,其表达模式与其他软体动物相似,表明该基因在生殖细胞的发育中起着至关重要的作用,可以作为该物种的生殖细胞标记物 [35] 。Foxl2、卵黄蛋白原(VG)、卵黄蛋白原受体(VGR)以及5-羟色胺(5-HT)主要在砗磲(Tridacna squamosa)的卵巢中表达,表明它们在砗磲卵巢分化和发育中起关键作用 [36]

3.2. 甲壳动物性腺发育的基因调控

在甲壳类动物研究中,Fc-Vasa在中国对虾(Fenneropenaeus chinensis)成熟性腺中特异性表达,随着性腺发育的进行,卵巢中的转录减少,但精巢中的转录增加;原位杂交证明了Fc-Vasa转录本定位于精原细胞和卵母细胞的细胞质中 [37] 。还有研究通过分子克隆、表达模式分析和原位杂交方法表明SoxE1参与了日本沼虾(Macrobrachium nipponense)的性腺分化和发育,特别是精巢的发育 [38] 。Jin等通过日本沼虾性腺转录组分析和qPCR结果,发现4种性腺发育相关基因包括JHEH、DHP、ALY和SMA6,它们在性腺分化发育的敏感期高表达。JHEH、DHP和ALY可能参与日本沼虾的卵巢发育,而SMA6在精巢发育中起着更重要的作用。RNAi对Mn-SMA6的进一步功能分析表明,SMA6正向调控Mn-IAG的表达和睾丸发育 [39]

原位杂交发现,Sp-Vasa基因的杂交信号强度在泥蟹精原细胞到精子细胞的发生过程中逐渐增加,而在随着卵母细胞在卵子发生过程中大小的增加,信号从强变弱 [40] ,结果表明Vasa基因在性腺发育中起着重要作用,可以作为一种特殊的生殖细胞标记物,用于追踪生殖细胞向性腺迁移的起源和精确路径。此外,Lin等人也通过荧光原位杂交技术发现Sp-SoxB2存在于泥蟹性腺的体细胞和发育中的生殖细胞中。在精巢中,Sp-SoxB2明显定位于精母细胞和精子细胞中。在卵巢中的卵泡细胞和卵母细胞中检测到Sp-SoxB2,在卵泡细胞中信号最强,推测SoxB2基因在泥蟹性腺发育过程中起着关键作用 [41]

3.3. 棘皮动物性腺发育的基因调控

在棘皮动物研究中,Wei等人通过对仿刺参(Apostichopus japonicus)性腺和非性腺组织进行转录组的比较和分析,确定了控制性腺发育和生殖细胞成熟的关键候选基因模块,CDT1和DYNC2LI1为核心基因 [42] 。此外,仿刺参整个精子发生过程中Dmrt1的表达持续存在,通过RNAi敲除Dmrt1会导致精巢中SoxE的下调和卵巢调节因子foxl2的上调,这表明Dmrt1可能是SoxE的正调节因子,并可能在海参精巢的发育中发挥作用,而SoxE在卵巢中的表达水平高于睾丸,可能在海参卵巢分化过程中具有重要功能 [43]

Jia等确定了8个与光棘球海胆(Strongylocentrotus nudus)卵巢成熟度相关的候选基因,包括Mos、Cdc20、Rec8、YP30、CytochromeP450 2U1、Ovoperoxidase、Proteoliaisin和Rendezvin [44] 。Wang等在虾胰马粪海胆(Strongylocentrotus intermedius)中发现了和性腺发育相关的基因,其中Acsf2基因可能诱导性腺中生殖细胞的发育,并促进产卵 [45] 。在光棘球海胆(Mesocentrotus nudus)的研究中,通过雌雄性腺的转录组测序,发现了几个生殖细胞标记基因(Vasa, Nanos, Piwi, Dazl),还发现了Dmrt1和Foxl2基因,并揭示了Dmrt1在精巢中的特异性表达,Foxl2在卵巢和睾丸中均有表达,表明它们可能在精巢和卵巢的发育和分化过程中发挥重要作用 [46]

4. 其他重要调控因素 4.1. 生长因子

生长因子在性腺发育中扮演着重要角色,如胰岛素样生长因子(IGF)、转化生长因子-β (TGFβ)、基础性生长因子(bFGF)等,它们通过调节细胞增殖、分化和成熟来影响性腺发育。

比如在太平洋牡蛎中研究了IGF系统成分(MIP、CIR和IGFBP-ALS)和性别相关特异性基因(Vg和Gyc76C)的表达,发现它们的表达水平在5月牡蛎成熟并即将产卵时显著升高,表明性腺中IGF系统成分与性腺发育成熟有关 [47] 。而在虾夷扇贝中,确定了在其性腺发育中起作用的TGFβ以及和TGFβ相关的基因Bmp2a,该基因在性腺中特异性表达,qPCR结果显示Bmp2a的表达量在生长期初期最低,在成熟期达到峰值,研究认为TGFβ信号传导对于双壳类的性腺发育起重要作用 [48]

在甲壳类动物中,雄性分化和第二性征被认为主要由胰岛素样雄激素因子(IAG)控制,由雄性特异性内分泌腺体(AG)合成和分泌 [49] [50] 。IAG的表达诱导精巢分化,而去除AG或RNA干扰介导的IAG转录本减少会导致精巢转化和甲壳动物的性逆转 [51] - [53]

4.2. 环境因素

水温、光照、营养水平等环境因素以及环境污染都可能影响水产无脊椎动物的性腺发育。这些因素可以通过影响内分泌系统、基因表达或细胞信号传导等途径,间接或直接地调节性腺发育过程。

在皱纹盘鲍(Haliotis discus hannai)中发现GnRH-R, 5-HT, APG Wamide等基因在随着升温天数(EAT)的增多表达量也随之升高,在诱导产卵时这些基因的mRNA表达较高,产卵后急剧下降,表明这些基因参与了诱导产卵过程,EAT天数的增加可以增加神经内分泌基因的表达并促进性腺成熟 [54] 。而Johnstone等人发现,高温胁迫下,海胆(Arbacia punctulata)高性腺组织中的蛋白质羰基(PC)含量显著增加,性腺细胞凋亡,导致其生殖功能受损 [55]

有研究显示由蓝藻藻华产生的微囊藻毒素(MCs)可以通过影响精巢和眼柄中的睾酮(T)水平和性腺发育相关基因来抑制罗氏沼虾(Macrobrachium rosenbergii)的性腺发育,MC-LR可进入精巢,下调血淋巴中的T水平,破坏精巢生殖细胞、线粒体和细胞连接,抑制精巢发育 [56] 。Sun等人发现缺氧环境会破坏日本沼虾精巢生殖细胞的质量,导致性激素(睾酮和雌二醇)失衡,并延迟精巢的发育,同时还显著抑制F1代精巢中抗氧化基因和性腺发育相关基因的表达 [57] 。此外,缺氧也会导致其他一些甲壳类动物繁殖迟缓 [58] [59]

这些研究表明,温度对不同物种性腺发育的影响会有差异,温度升高可通过系列基因表达促进性腺发育和成熟。而高温、环境污染和缺氧等胁迫也会通过基因和激素调控影响生殖细胞的发育。

5. 性腺发育和性别的人为干预研究进展

在水产无脊椎动物中,性腺发育和性别控制是一个复杂而多样的领域。自然条件下,性别比例的不稳定性及性腺发育过程中的不确定性,往往会限制资源的有效管理和品种改良的进程。因此探索性腺发育和性别控制的人为干预手段对提高养殖效率及优化种质资源具有重要意义。这一领域的研究目前主要集中在一些类固醇激素调控、基因干预等,主要通过一些特定激素的应用及基因编辑技术的介入等手段来对性别进行控制。

类固醇激素可以对软体动物性腺发育造成影响,甚至造成性逆转。在成体虾夷扇贝中,Foxl2和Tesk基因分别在成熟期雌性和雄性的性腺中表达,研究显示使用T和E2处理可能影响性逆转期扇贝性腺的Tesk表达,然而对成熟期的扇贝性腺没有影响。这表明性激素处理可能影响性逆转期的性腺发育 [60] 。Wang和Croll在低龄的海扇贝(Placopecten magellanicus)中注射E2、T、P及脱氢表雄酮可加速性腺分化,E2会刺激卵母细胞生长,而T可能对雌性个体的性腺发育有抑制作用 [61] 。Osada等人报道E2可以促进扇贝中卵黄蛋白原合成和精原细胞增殖 [7] [62] 。向珍珠贝(Pinctada margaritifera)中注射E2会导致雄性比例显著降低,且使成熟精子的比例明显降低,表明17β-雌二醇对珍珠贝的精巢发育有负面影响 [63] 。在侏儒蛤(Mulinia lateralis)中,投喂甲基睾酮可以加速其性腺成熟,导致产卵频率增加,且雄性比例会增加1倍 [64]

基因干预方面,在合浦珠母贝(Pinctada fucata)中,将Vasa dsRNA注射到完全成熟的卵巢中,6小时后诱导产卵,携带Vasa dsRNA的后代性腺明显小于对照组,证明其可以抑制性腺生殖细胞的发育,是诱导水产无脊椎动物不育的有效策略 [65] 。Ma等人通过向中华绒螯蟹中重复注射dsRNA靶向Dmrt基因编码区,发现Dmrt在其精子发生和精巢发育中具有重要作用 [66]

这些研究表明注射、浸泡或投喂一些类固醇激素,以及通过基因编辑技术等方法,都是对无脊椎动物性腺发育和性别人为干预的途径,有助于解决性别不平衡、提高养殖效率及优化种质资源等问题。

6. 总结与展望

水产无脊椎动物作为生态系统的重要组成部分和人类食物来源之一,其性腺发育的调控机制对其性别控制、人工繁育及水产养殖产业的发展具有重要意义。水产无脊椎动物性腺发育是一个涉及基因、类固醇激素、环境等多方面调控的复杂过程。深入理解并利用这些调控机制,不仅有助于揭示水产无脊椎动物性腺发育调控的基本规律,也为优化人工繁育技术、性别控制、遗传育种、保护生物多样性等提供科学支撑。

水产无脊椎动物性腺发育调控的研究尽管已经取得诸多结果,但目前还局限于分子鉴定、克隆和表达分析,而许多分子机制和调控通路尚不完全清楚,未来仍面临许多挑战和机遇。首先,不同性别的性腺发育调控网络可能存在显著差异,需要进一步开展雌雄之间的基因组学和转录组学研究,揭示共性和特异性调控机制。其次,环境因素与基因、激素间的互作效应尚不清晰,未来需结合生态学和分子生物学手段,探究环境压力下性腺发育的适应策略。此外,开发基于性腺发育调控机制的生物标记和干预技术,对于提升水产无脊椎动物的繁殖效率、开展遗传育种学研究具有重要意义。

基金项目

山东省重点研发计划“优质海水鱼和蛤仔育繁推创新能力提升项目”(2023LZGCQY001);大连市科技计划“紫石房蛤种质资源保护与人工增养殖开发”(2023JJ12SN027);国家现代农业产业技术体系(CARS-49)。

NOTES

*通讯作者。

References Simard, J., Ricketts, M., Gingras, S., Soucy, P., Feltus, F.A. and Melner, M.H. (2005) Molecular Biology of the 3β-Hydroxysteroid Dehydrogenase/Δ 5− Δ 4Isomerase Gene Family. Endocrine Reviews, 26, 525-582. >https://doi.org/10.1210/er.2002-0050 Edwards, D.P. (2005) Regulation of Signal Transduction Pathways by Estrogen and Progesterone. Annual Review of Physiology, 67, 335-376. >https://doi.org/10.1146/annurev.physiol.67.040403.120151 Wierman, M.E. (2007) Sex Steroid Effects at Target Tissues: Mechanisms of Action. Advances in Physiology Education, 31, 26-33. >https://doi.org/10.1152/advan.00086.2006 Lafont, R. and Mathieu, M. (2007) Steroids in Aquatic Invertebrates. Ecotoxicology, 16, 109-130. >https://doi.org/10.1007/s10646-006-0113-1 Janer, G. and Porte, C. (2007) Sex Steroids and Potential Mechanisms of Non-Genomic Endocrine Disruption in Invertebrates. Ecotoxicology, 16, 145-160. >https://doi.org/10.1007/s10646-006-0110-4 Thitiphuree, T., Nagasawa, K. and Osada, M. (2019) Molecular Identification of Steroidogenesis-Related Genes in Scallops and Their Potential Roles in Gametogenesis. The Journal of Steroid Biochemistry and Molecular Biology, 186, 22-33. >https://doi.org/10.1016/j.jsbmb.2018.09.004 Osada, M., Takamura, T., Sato, H. and Mori, K. (2003) Vitellogenin Synthesis in the Ovary of Scallop, Patinopecten yessoensis: Control by Estradiol‐17β and the Central Nervous System. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 299, 172-179. >https://doi.org/10.1002/jez.a.10276 Qin, Z., Li, Y., Sun, D., Shao, M. and Zhang, Z. (2012) Cloning and Expression Analysis of the Vitellogenin Gene in the Scallop Chlamys farreri and the Effects of Estradiol‐17β on Its Synthesis. Invertebrate Biology, 131, 312-321. >https://doi.org/10.1111/ivb.12006 Wang, C. and Croll, R.P. (2003) Effects of Sex Steroids On in Vitro Gamete Release in the Sea Scallop, Placopecten magellanicus. Invertebrate Reproduction & Development, 44, 89-100. >https://doi.org/10.1080/07924259.2003.9652559 Wang, C. and Croll, R.P. (2007) Estrogen Binding Sites in the Sea Scallop: Characterization and Possible Involvement in Reproductive Regulation. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 148, 303-313. >https://doi.org/10.1016/j.cbpb.2007.06.008 Ni, J., Zeng, Z. and Ke, C. (2013) Sex Steroid Levels and Expression Patterns of Estrogen Receptor Gene in the Oyster Crassostrea angulata during Reproductive Cycle. Aquaculture, 376, 105-116. >https://doi.org/10.1016/j.aquaculture.2012.11.023 谢欣冉, 张玲玲, 孙红振, 等. 性类固醇激素在虾夷扇贝性腺发育周期的分布[J]. 中国海洋大学学报(自然科学版), 2019, 49(7): 20-25. Ketata, I., Guermazi, F., Rebai, T. and Hamza-Chaffai, A. (2007) Variation of Steroid Concentrations during the Reproductive Cycle of the Clam Ruditapes decussatus: A One Year Study in the Gulf of Gabès Area. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147, 424-431. >https://doi.org/10.1016/j.cbpa.2007.01.017 刘建国. 栉孔扇贝(Chlamys farreri)性类固醇激素和17β-羟类固醇脱氢酶8在性腺发育过程中的潜在作用[D]: [博士学位论文]. 青岛: 中国海洋大学, 2014. Pan, J., Liu, M., Chen, T., Cheng, Y. and Wu, X. (2018) Immunolocalization and Changes of 17beta-Estradiol during Ovarian Development of Chinese Mitten Crab Eriocheir sinensis. Cell and Tissue Research, 373, 509-520. >https://doi.org/10.1007/s00441-018-2834-x Warrier, S.R., Tirumalai, R. and Subramoniam, T. (2001) Occurrence of Vertebrate Steroids, Estradiol 17β and Progesterone in the Reproducing Females of the Mud Crab Scylla serrata. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 130, 283-294. >https://doi.org/10.1016/s1095-6433(01)00385-3 Shen, B.J., Yang, X.Z., Wu, X.G., et al. (2010) The Effects of Exogenous 17β-Estradiol on Ovary Development and on the Level of Endogenous 17β-Estradiol in Eriocheir sinensis. Journal of Shanghai Ocean University, 19, 289-295. Quinitio, E.T., Yamauchi, K., Hara, A. and Fuji, A. (1991) Profiles of Progesterone-and Estradiol-Like Substances in the Hemolymph of Female Pandalus kessleri during an Annual Reproductive Cycle. General and Comparative Endocrinology, 81, 343-348. >https://doi.org/10.1016/0016-6480(91)90160-8 Burns, B.G., Sangalang, G.B., Freeman, H.C. and McMenemy, M. (1984) Isolation and Identification of Testosterone from the Serum and Testes of the American Lobster (Homarus americanus). General and Comparative Endocrinology, 54, 429-432. >https://doi.org/10.1016/0016-6480(84)90158-8 Thongbuakaew, T., Suwansa-ard, S., Chaiyamoon, A., Cummins, S.F. and Sobhon, P. (2021) Sex Steroids and Steroidogenesis-Related Genes in the Sea Cucumber, Holothuria scabra and Their Potential Role in Gonad Maturation. Scientific Reports, 11, Article No. 2194. >https://doi.org/10.1038/s41598-021-81917-x Schoenmakers, H.J.N. and Dieleman, S.J. (1981) Progesterone and Estrone Levels in the Ovaries, Pyloric Ceca, and Perivisceral Fluid during the Annual Reproductive Cycle of Starfish, Asterias rubens. General and Comparative Endocrinology, 43, 63-70. >https://doi.org/10.1016/0016-6480(81)90032-0 Xu, R.A. and Barker, M.F. (1990) Effect of Diet on Steroid Levels and Reproduction in the Starfish, Sclerasterias mollis. Comparative Biochemistry and Physiology Part A: Physiology, 96, 33-39. >https://doi.org/10.1016/0300-9629(90)90037-s Hines, G.A., Watts, S.A., Sower, S.A. and Walker, C.W. (1992) Sex Steroid Levels in the Testes, Ovaries, and Pyloric Caeca during Gametogenesis in the Sea Star Asterias Vulgaris. General and Comparative Endocrinology, 87, 451-460. >https://doi.org/10.1016/0016-6480(92)90053-m Barbaglio, A., Sugni, M., Di Benedetto, C., Bonasoro, F., Schnell, S., Lavado, R., et al. (2007) Gametogenesis Correlated with Steroid Levels during the Gonadal Cycle of the Sea Urchin Paracentrotus lividus (Echinodermata: Echinoidea). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147, 466-474. >https://doi.org/10.1016/j.cbpa.2007.01.682 Voogt, P.A. and Dieleman, S.J. (1984) Progesterone and Oestrone Levels in the Gonads and Pyloric Caeca of the Male Sea Star Asterias Rubens: A Comparison with the Corresponding Levels in the Female Sea Star. Comparative Biochemistry and Physiology Part A: Physiology, 79, 635-639. >https://doi.org/10.1016/0300-9629(84)90461-4 Barbaglio, A., Sugni, M., Fernandes, D., Porte, C. and Candia Carnevali, M.D. (2012) Reproductive Cycle and Sex Hormones in the Feather Star Antedon mediterranea. Journal of Experimental Marine Biology and Ecology, 422, 129-136. >https://doi.org/10.1016/j.jembe.2012.04.013 Penman, D.J. and Piferrer, F. (2008) Fish Gonadogenesis. Part I: Genetic and Environmental Mechanisms of Sex Determination. Reviews in Fisheries Science, 16, 16-34. >https://doi.org/10.1080/10641260802324610 Zhang, N., Xu, F. and Guo, X. (2014) Genomic Analysis of the Pacific Oyster (Crassostrea gigas) Reveals Possible Conservation of Vertebrate Sex Determination in a Mollusc. G3 Genes|Genomes|Genetics, 4, 2207-2217. >https://doi.org/10.1534/g3.114.013904 张娜, 黄雯, 许飞, 李莉, 张国范, 郭希明. 长牡蛎(Crassostrea gigas)两个Dmrt家族基因的时空表达[J]. 海洋与湖沼, 2015, 46(3): 717-724. Santerre, C., Sourdaine, P., Adeline, B. and Martinez, A. (2014) Cg-soxe and Cg-Β-Catenin, Two New Potential Actors of the Sex-Determining Pathway in a Hermaphrodite Lophotrochozoan, the Pacific Oyster Crassostrea Gigas. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 167, 68-76. >https://doi.org/10.1016/j.cbpa.2013.09.018 Liu, L., Liu, T., Wu, S., Li, Y., Wei, H., Zhang, L., et al. (2022) Discovery of Nanos1 and Nanos2/3 as Germ Cell Markers during Scallop Gonadal Development. Marine Biotechnology, 24, 408-416. >https://doi.org/10.1007/s10126-022-10124-0 Li, R., Zhang, L., Li, W., Zhang, Y., Li, Y., Zhang, M., et al. (2018) FOXL2 and DMRT1L Are Yin and Yang Genes for Determining Timing of Sex Differentiation in the Bivalve Mollusk Patinopecten yessoensis. Frontiers in Physiology, 9. >https://doi.org/10.3389/fphys.2018.01166 Liu, X., Li, Y., Liu, J., Cui, L. and Zhang, Z. (2014) Gonadogenesis in Scallop chlamys Farreri and cf-Foxl2 Expression Pattern during Gonadal Sex Differentiation. Aquaculture Research, 47, 1605-1611. >https://doi.org/10.1111/are.12621 梁少帅, 于潇含, 杨丹丹, 秦贞奎. 栉孔扇贝Sox9基因的cDNA克隆及其在不同发育时期性腺中的表达特征[J]. 中国水产科学, 2017(6): 27-35. Yu, L., Xu, D., Ye, H., Yue, H., Ooka, S., Kondo, H., et al. (2018) Gonadal Transcriptome Analysis of Pacific Abalone Haliotis discus discus: Identification of Genes Involved in Germ Cell Development. Marine Biotechnology, 20, 467-480. >https://doi.org/10.1007/s10126-018-9809-5 Li, J., Zhou, Y., Zhou, Z., Lin, C., Wei, J., Qin, Y., et al. (2020) Comparative Transcriptome Analysis of Three Gonadal Development Stages Reveals Potential Genes Involved in Gametogenesis of the Fluted Giant Clam (Tridacna squamosa). BMC Genomics, 21, Article No. 872. >https://doi.org/10.1186/s12864-020-07276-5 Zhou, Q., Shao, M., Qin, Z., Kyoung, H.K. and Zhang, Z. (2010) Cloning, Characterization, and Expression Analysis of the Dead-Box Family Genes, Fc-Vasa and Fc-PL10a, in Chinese Shrimp (Fenneropenaeus chinensis). Chinese Journal of Oceanology and Limnology, 28, 37-45. >https://doi.org/10.1007/s00343-010-9231-y Hu, Y., Jin, S., Fu, H., Qiao, H., Zhang, W., Jiang, S., et al. (2019) Functional Analysis of a SoxE Gene in the Oriental Freshwater Prawn, Macrobrachium nipponense by Molecular Cloning, Expression Pattern Analysis, and in Situ Hybridization (de Haan, 1849). 3 Biotech, 10, Article No. 10. >https://doi.org/10.1007/s13205-019-1996-x Jin, S., Zhang, W., Xiong, Y., Jiang, S., Qiao, H., Gong, Y., et al. (2022) Identification of Important Genes Involved in the Sex-Differentiation Mechanism of Oriental River Prawn, Macrobrachium nipponense, during the Gonad Differentiation and Development Period. Frontiers in Genetics, 13, Article 797796. >https://doi.org/10.3389/fgene.2022.797796 Wang, Y., Chen, Y., Han, K., Zou, Z. and Zhang, Z. (2011) A Vasa Gene from Green Mud Crab Scylla paramamosain and Its Expression during Gonadal Development and Gametogenesis. Molecular Biology Reports, 39, 4327-4335. >https://doi.org/10.1007/s11033-011-1220-5 Lin, J., Yuan, Y., Shi, X., Fang, S., Zhang, Y., Guan, M., et al. (2020) Molecular Cloning, Characterization and Expression Profiles of a SoxB2 Gene Related to Gonadal Development in Mud Crab (Scylla paramamosain). Invertebrate Reproduction & Development, 64, 126-136. >https://doi.org/10.1080/07924259.2020.1726515 Wei, Y., Huang, D., Ye, Z., Jiang, Z., Ge, L., Ren, Y., et al. (2023) Comparative Transcriptome Analysis Reveals Key Genes and Pathways Related to Gonad Development in the Sea Cucumber Apostichopus japonicus. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 48, 101144. >https://doi.org/10.1016/j.cbd.2023.101144 Liu, B., Cong, J., Su, W., Hao, Z., Sun, Z. and Chang, Y. (2023) Identification and Functional Analysis of Dmrt1 Gene and the SoxE Gene in the Sexual Development of Sea Cucumber, Apostichopus japonicus. Frontiers in Genetics, 14. >https://doi.org/10.3389/fgene.2023.1097825 Jia, Z., Wang, Q., Wu, K., Wei, Z., Zhou, Z. and Liu, X. (2017) De Novo Transcriptome Sequencing and Comparative Analysis to Discover Genes Involved in Ovarian Maturity in Strongylocentrotus nudus. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 23, 27-38. >https://doi.org/10.1016/j.cbd.2017.05.002 Wang, H., Ding, J., Ding, S. and Chang, Y. (2019) Transcriptome Analysis to Characterize the Genes Related to Gonad Growth and Fatty Acid Metabolism in the Sea Urchin Strongylocentrotus intermedius. Genes & Genomics, 41, 1397-1415. >https://doi.org/10.1007/s13258-019-00864-0 Sun, Z., Zhang, J., Zhang, W. and Chang, Y. (2019) Gonadal Transcriptomic Analysis and Identification of Candidate Sex-Related Genes in Mesocentrotus nudus. Gene, 698, 72-81. >https://doi.org/10.1016/j.gene.2019.02.054 Moon, J. and Choi, Y.H. (2020) Role of the Insulin-Like Growth Factor System in Gonad Sexual Maturation in Pacific Oyster Crassostrea Gigas. Fisheries and Aquatic Sciences, 23, [page]. >https://doi.org/10.1186/s41240-020-00152-z Konuma, M., Nagasawa, K., Mokrina, M., Kobayashi, M. and Osada, M. (2021) Gonadal Somatic Cell-Specific Transforming Growth Factor-Β Superfamily Member in the Yesso Scallop Reveals Gonadal Somatic Cell Distribution during the Reproductive Phase. Gene, 787, 145627. >https://doi.org/10.1016/j.gene.2021.145627 Manor, R., Weil, S., Oren, S., Glazer, L., Aflalo, E.D., Ventura, T., et al. (2007) Insulin and Gender: An Insulin-Like Gene Expressed Exclusively in the Androgenic Gland of the Male Crayfish. General and Comparative Endocrinology, 150, 326-336. >https://doi.org/10.1016/j.ygcen.2006.09.006 Ventura, T., Manor, R., Aflalo, E.D., Weil, S., Raviv, S., Glazer, L., et al. (2008) Temporal Silencing of an Androgenic Gland-Specific Insulin-Like Gene Affecting Phenotypical Gender Differences and Spermatogenesis. Endocrinology, 150, 1278-1286. >https://doi.org/10.1210/en.2008-0906 Sagi, A., Cohen, D. and Milner, Y. (1990) Effect of Androgenic Gland Ablation on Morphotypic Differentiation and Sexual Characteristics of Male Freshwater Prawns, Macrobrachium rosenbergii. General and Comparative Endocrinology, 77, 15-22. >https://doi.org/10.1016/0016-6480(90)90201-v Rosen, O., Manor, R., Weil, S., Gafni, O., Linial, A., Aflalo, E.D., et al. (2010) A Sexual Shift Induced by Silencing of a Single Insulin-Like Gene in Crayfish: Ovarian Upregulation and Testicular Degeneration. PLOS ONE, 5, e15281. >https://doi.org/10.1371/journal.pone.0015281 Ventura, T., Manor, R., Aflalo, E.D., Weil, S., Khalaila, I., Rosen, O., et al. (2011) Expression of an Androgenic Gland-Specific Insulin-Like Peptide during the Course of Prawn Sexual and Morphotypic Differentiation. ISRN Endocrinology, 2011, 1-11. >https://doi.org/10.5402/2011/476283 Sukhan, Z.P., Cho, Y., Sharker, M.R., Hossen, S., Rha, S. and Kho, K.H. (2021) Effective Accumulative Temperature Affects Gonadal Maturation by Controlling Expression of Gnrh, Gnrh Receptor, Serotonin Receptor and Apgwamide Gene in Pacific Abalone, Haliotis Discus Hannai during Broodstock Conditioning in Hatcheries. Journal of Thermal Biology, 100, 103037. >https://doi.org/10.1016/j.jtherbio.2021.103037 Johnstone, J., Nash, S., Hernandez, E. and Rahman, M.S. (2019) Effects of Elevated Temperature on Gonadal Functions, Cellular Apoptosis, and Oxidative Stress in Atlantic Sea Urchin Arbacia punculata. Marine Environmental Research, 149, 40-49. >https://doi.org/10.1016/j.marenvres.2019.05.017 Zhang, Y., Zhuang, H., Yang, H., Xue, W., Wang, L. and Wei, W. (2019) Microcystin-LR Disturbs Testicular Development of Giant Freshwater Prawn Macrobrachium rosenbergii. Chemosphere, 222, 584-592. >https://doi.org/10.1016/j.chemosphere.2019.01.146 Sun, S., Chen, Y. and Hu, R. (2020) Aquatic Hypoxia Disturbs Oriental River Prawn (Macrobrachium nipponense) Testicular Development: A Cross-Generational Study. Environmental Pollution, 266, Article 115093. >https://doi.org/10.1016/j.envpol.2020.115093 Brown-Peterson, N.J., Manning, C.S., Patel, V., Denslow, N.D. and Brouwer, M. (2008) Effects of Cyclic Hypoxia on Gene Expression and Reproduction in a Grass Shrimp, Palaemonetes pugio. The Biological Bulletin, 214, 6-16. >https://doi.org/10.2307/25066655 Miller Neilan, R. and Rose, K. (2014) Simulating the Effects of Fluctuating Dissolved Oxygen on Growth, Reproduction, and Survival of Fish and Shrimp. Journal of Theoretical Biology, 343, 54-68. >https://doi.org/10.1016/j.jtbi.2013.11.004 Otani, A., Nakajima, T., Okumura, T., Fujii, S. and Tomooka, Y. (2017) Sex Reversal and Analyses of Possible Involvement of Sex Steroids in Scallop Gonadal Development in Newly Established Organ-Culture Systems. Zoological Science, 34, 82-92. >https://doi.org/10.2108/zs160070 Wang, C. and Croll, R.P. (2004) Effects of Sex Steroids on Gonadal Development and Gender Determination in the Sea Scallop, Placopecten Magellanicus. Aquaculture, 238, 483-498. >https://doi.org/10.1016/j.aquaculture.2004.05.024 Osada, M. and Treen, N. (2013) Molluscan GnRH Associated with Reproduction. General and Comparative Endocrinology, 181, 254-258. >https://doi.org/10.1016/j.ygcen.2012.09.002 Teaniniuraitemoana, V., Leprêtre, M., Levy, P., Vanaa, V., Parrad, S., Gaertner‐Mazouni, N., et al. (2015) Effect of Temperature, Food Availability, and Estradiol Injection on Gametogenesis and Gender in the Pearl Oyster Pinctada margaritifera. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 325, 13-24. >https://doi.org/10.1002/jez.1992 Moss, S. (1989) Effects of Exogenous Androgens on Growth, Biochemical Composition, and Reproduction of the Coot Clam, Mulinia lateralis. Pacific Science, 43, Article No. 200. Marin, F., Marie, B., Hamada, S.B., et al. (2013) Recent Advances in Pearl Research: Proceedings of the International Symposium on Pearl Research. TERRAPUB, 109-123. Ma, K., Chen, J., Liu, Z. and Qiu, G. (2016) Inhibitory Effects of RNAi-Mediated Knockdown of EsDmrt-Like Gene on Testicular Development in the Chinese Mitten Crab Eriocheir sinensis. Aquaculture, 463, 217-223. >https://doi.org/10.1016/j.aquaculture.2016.06.003
Baidu
map