Figure 2. (A) SEM images of BiOI; (B) SEM images of PANI; (C) SEM images of SiO2@BiOI; (D) SEM images of SiO2@BiOI/PANI--图2. (A) BiOI的扫描电镜图;(B) PANI的扫描电镜图;(C) SiO2@BiOI的扫描电镜图;(D) SiO2@BiOI/PANI的扫描电镜图--Figure 3. (A) XDR patterns of SiO2, BiOI, PANI, and SiO2@BiOI/PANI; (B) Ultraviolet-visible diffuse reflectance spectra (UV-vis) of SiO2, BiOI, PANI, and SiO2@BiOI/PANI--图3. (A) SiO2、BiOI、PANI和SiO2@BiOI/PANI的X射线衍射图;(B) SiO2、BiOI、PANI和SiO2@BiOI/PANI的紫外–可见吸收光谱图--3.3. BiOI、SiO2@BiOI、PANI和SiO2@BiOI/PANI的电化学和光电化学性能
Figure 4. (A) Effect of optimization of the concentrations of SiO2@BiOI on the photocurrent responses; (B) Effect of optimization of the concentrations of PANI on the photocurrent responses--图4. (A) 优化SiO2@BiOI浓度对光电流响应的影响;(B) 优化PANI浓度对光电流响应的影响--
Figure 6. (A) DPVs of the SiO2@BiOI/PANI/GCE in PBS solution containing 0.1 mmol/L GlU under visible light illumination at different pH values (pH = 5, 6, 7, 8, 9); (B) Linear relationship diagram between oxidation peak potential and pH values; (C) LSVs of SiO2@BiOI/PANI/GCE at different scanning rates (20~200 mV∙s−1) under visible light illumination; (D) Linear relationship diagram between the corresponding oxidation peak current and scanning rate--图6. (A) 在光照下,SiO2@BiOI/PANI/GCE在含有0.1 mmol/L GlU的PBS缓冲液中不同酸碱度下(pH = 5、6、7、8、9)的差分脉冲伏安曲线图;(B) 相应的氧化峰电位和pH之间的线性关系图;(C) 在光照下,SiO2@BiOI/PANI/GCE在扫描速率不同(20~200 mV∙s−1)时的线性扫描伏安曲线图;(D) 相应的氧化峰电流和扫描速率之间的线性关系图--3.5. 优化检测限、抗干扰性、耐久性的研究
References
Jiang, S., Zhang, Y., Yang, Y., Huang, Y., Ma, G., Luo, Y., et al. (2019) Glucose Oxidase-Instructed Fluorescence Amplification Strategy for Intracellular Glucose Detection. ACS Applied Materials&Interfaces, 11, 10554-10558. >https://doi.org/10.1021/acsami.9b00010
Hao, Y., Fang, M., Xu, C., Ying, Z., Wang, H., Zhang, R., et al. (2021) A Graphene-Laminated Electrode with High Glucose Oxidase Loading for Highly-Sensitive Glucose Detection. Journal of Materials Science&Technology, 66, 57-63. >https://doi.org/10.1016/j.jmst.2020.04.070
Madden, J., Barrett, C., Laffir, F.R., Thompson, M., Galvin, P. and O’Riordan, A. (2021) On-Chip Glucose Detection Based on Glucose Oxidase Immobilized on a Platinum-Modified, Gold Microband Electrode. Biosensors, 11, Article 249. >https://doi.org/10.3390/bios11080249
Zha, S., Li, H., Law, G., Wong, K. and All, A.H. (2023) Sensitive and Responsive Upconversion Nanoprobes for Fluorescence Turn-On Detection of Glucose Concentration. Materials&Design, 227, Article ID: 111800. >https://doi.org/10.1016/j.matdes.2023.111800
Jin, H., Zeng, W., Qian, W., Li, L., Ji, P., Li, Z., et al. (2024) Accelerated Reconstruction of ZIF-67 with Significantly Enhanced Glucose Detection Sensitivity. Nano Research, 17, 4737-4743. >https://doi.org/10.1007/s12274-023-6409-0
Chen, X., Dou, X., Qiu, W., Hong, Y. and Chen, Y. (2023) A Glucose-Sensitive Microgel Operating at Physiological Conditions for Glucose Detecting and Insulin Delivery. European Polymer Journal, 195, Article ID: 112236. >https://doi.org/10.1016/j.eurpolymj.2023.112236
Hou, Z., Gao, T., Liu, X., Guo, W., Bai, L., Wang, W., et al. (2023) Dual Detection of Human Motion and Glucose in Sweat with Polydopamine and Glucose Oxidase Doped Self-Healing Nanocomposite Hydrogels. International Journal of Biological Macromolecules, 252, Article ID: 126473. >https://doi.org/10.1016/j.ijbiomac.2023.126473
Wu, M., Zhang, Y., Liu, Q., Huang, H., Wang, X., Shi, Z., et al. (2019) A Smart Hydrogel System for Visual Detection of Glucose. Biosensors and Bioelectronics, 142, Article ID: 111547. >https://doi.org/10.1016/j.bios.2019.111547
Li, X., Lv, J., Zhao, J., Ling, G. and Zhang, P. (2024) Swellable Colorimetric Microneedles for Glucose Detection Based on Glucose Oxidase-Like Gold Nanoparticles. Analytica Chimica Acta, 1288, Article ID: 342152. >https://doi.org/10.1016/j.aca.2023.342152
Rernglit, W., Teanphonkrang, S., Suginta, W. and Schulte, A. (2019) Amperometric Enzymatic Sensing of Glucose Using Porous Carbon Nanotube Films Soaked with Glucose Oxidase. Microchimica Acta, 186, Article No. 616. >https://doi.org/10.1007/s00604-019-3740-y
Jarnda, K.V., Wang, D., Qurrat-Ul-Ain, Anaman, R., Johnson, V.E., Roberts, G.P., et al. (2023) Recent Advances in Electrochemical Non-Enzymatic Glucose Sensor for the Detection of Glucose in Tears and Saliva: A Review. Sensors and Actuators A: Physical, 363, Article ID: 114778. >https://doi.org/10.1016/j.sna.2023.114778
Ma, R., Wang, Y., Sha, Z., et al. (2024) Te-Au Nanowires with Multiple Enzyme-Like Activities for Glucose Detection. Journal of Materials Science, 59, 1-17.
Han, Z., Zhang, X., Yuan, H., Li, Z., Li, G., Zhang, H., et al. (2022) Graphene Oxide/Gold Nanoparticle/Graphite Fiber Microelectrodes for Directing Electron Transfer of Glucose Oxidase and Glucose Detection. Journal of Power Sources, 521, Article ID: 230956. >https://doi.org/10.1016/j.jpowsour.2021.230956
Chen, C., Fu, J., Chang, J., Huang, S., Yeh, T., Hung, J., et al. (2018) Bismuth Oxyfluoride/Bismuth Oxyiodide Nanocomposites Enhance Visible-Light-Driven Photocatalytic Activity. Journal of Colloid and Interface Science, 532, 375-386. >https://doi.org/10.1016/j.jcis.2018.07.130
Siao, C., Chen, H., Chen, L., Chang, J., Yeh, T. and Chen, C. (2018) Controlled Hydrothermal Synthesis of Bismuth Oxychloride/Bismuth Oxybromide/Bismuth Oxyiodide Composites Exhibiting Visible-Light Photocatalytic Degradation of 2-Hydroxybenzoic Acid and Crystal Violet. Journal of Colloid and Interface Science, 526, 322-336. >https://doi.org/10.1016/j.jcis.2018.04.097
Zhang, T., Yue, X., Gao, L., Qiu, F., Xu, J., Rong, J., et al. (2017) Hierarchically Porous Bismuth Oxide/Layered Double Hydroxide Composites: Preparation, Characterization and Iodine Adsorption. Journal of Cleaner Production, 144, 220-227. >https://doi.org/10.1016/j.jclepro.2017.01.030
Lee, Y., Dai, Y., Fu, J. and Chen, C. (2017) A Series of Bismuth-Oxychloride/Bismuth-Oxyiodide/Graphene-Oxide Nanocomposites: Synthesis, Characterization, and Photcatalytic Activity and Mechanism. Molecular Catalysis, 432, 196-209. >https://doi.org/10.1016/j.mcat.2017.01.002
Cai, J., Zhang, Y., Qian, T., Li, X., Chen, Z. and Zhang, L. (2022) Bismuth Oxybromide/Bismuth Oxyiodide Nanojunctions Decorated on Flexible Carbon Fiber Cloth as Easily Recyclable Photocatalyst for Removing Various Pollutants from Wastewater. Journal of Colloid and Interface Science, 608, 2660-2671. >https://doi.org/10.1016/j.jcis.2021.10.188
Luo, Y., Zhang, M., Yin, H., Yao, J., Chen, S. and Liu, X. (2019) One Pot Controllable Synthesis of Palygorskite/Bismuth Oxyiodide Hierarchical Microspheres for Improved Visible-Light Photocatalytic Performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 578, Article ID: 123573. >https://doi.org/10.1016/j.colsurfa.2019.06.038
Pei, Z. and Guo, H. (2023) Synthesis of Sio2-Doped Biox (X=Cl, Br) II-Type Heterojunctions and 2H-MoS
2-Doped SiO
2@Biox Z-Scheme Heterojunctions: A Comparative Study. Journal of Physics and Chemistry of Solids, 176, Article ID: 111236. >https://doi.org/10.1016/j.jpcs.2023.111236
Lv, J., Hu, Q., Cao, C. and Zhao, Y. (2018) Modulation of Valence Band Maximum Edge and Photocatalytic Activity of Biox by Incorporation of Halides. Chemosphere, 191, 427-437. >https://doi.org/10.1016/j.chemosphere.2017.09.149
Wang, J., Bei, J., Guo, X., Ding, Y., Chen, T., Lu, B., et al. (2022) Ultrasensitive Photoelectrochemical Immunosensor for Carcinoembryonic Antigen Detection Based on Pillar[5]arene-Functionalized Au Nanoparticles and Hollow PANI Hybrid BiOBr Heterojunction. Biosensors and Bioelectronics, 208, Article ID: 114220. >https://doi.org/10.1016/j.bios.2022.114220
Wang, J., Zhou, Q., Fan, C., Guo, X., Bei, J., Chen, T., et al. (2024) Ultrasensitive and Specific Photoelectrochemical Sensor for Hydrogen Peroxide Detection Based on Pillar[5]arene-Functionalized Au Nanoparticles and MWNTs Hybrid Biobr Heterojunction. Microchimica Acta, 191, Article No. 266. >https://doi.org/10.1007/s00604-024-06302-7
Chen, J., Li, H., Zhou, X., Li, E., Wang, Y., Guo, Y., et al. (2017) Efficient Synthesis of Hollow Silica Microspheres Useful for Porous Silica Ceramics. Ceramics International, 43, 13907-13912. >https://doi.org/10.1016/j.ceramint.2017.07.118
Wang, J., Guo, X., Zhou, Q., Cai, Y., Lu, B., Wang, Y., et al. (2024) Pillar[5]arene Functionalized Au NPs and BIOX (Cl/Br/I) Heterojunction Constructed the Enhanced Photo-Electrochemical Sensor for Ultrasensitive Detection of Serotonin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 688, Article ID: 133511. >https://doi.org/10.1016/j.colsurfa.2024.133511
Wang, J., Zhou, L., Bei, J., Zhao, Q., Li, X., He, J., et al. (2022) An Enhanced Photo-Electrochemical Sensor Constructed from Pillar[5]arene Functionalized Au NPs for Ultrasensitive Detection of Caffeic Acid. Talanta, 243, Article ID: 123322. >https://doi.org/10.1016/j.talanta.2022.123322
Xing, R., Yang, H., Li, S., Yang, J., Zhao, X., Wang, Q., et al. (2016) A Sensitive and Reliable Rutin Electrochemical Sensor Based on Palladium Phthalocyanine-MWCNTs-Nafion Nanocomposite. Journal of Solid State Electrochemistry, 21, 1219-1228. >https://doi.org/10.1007/s10008-016-3447-5
Wang, J., Lu, C., Chen, T., Hu, L., Du, Y., Yao, Y., et al. (2019) Simply Synthesized Nitrogen-Doped Graphene Quantum Dot (NGQD)-Modified Electrode for the Ultrasensitive Photoelectrochemical Detection of Dopamine. Nanophotonics, 9, 3831-3839. >https://doi.org/10.1515/nanoph-2019-0418
Wang, J., Zhou, L., Bei, J., Xie, M., Zhu, X., Chen, T., et al. (2022) An Specific Photoelectrochemical Sensor Based on Pillar[5]arenes Functionalized Gold Nanoparticles and Bismuth Oxybromide Nanoflowers for Bovine Hemoglobin Recognition. Journal of Colloid and Interface Science, 620, 187-198. >https://doi.org/10.1016/j.jcis.2022.04.014