Table 1. Process of some potassium ion battery cathode materials using ion exchangeTable 1. Process of some potassium ion battery cathode materials using ion exchange 表1. 一些钾离子电池正极材料运用离子交换法的过程
Figure 2. (a) Ex-situ XRD measurements of pristine, charged and discharged electrodes of Na0.84CoO2 [41]; (b) Ex situ XRD patterns at charge/discharge states of the pristine Na2Mn3O7 [45]; (c) Schematic diagram depicting two possible routes for reversible K+-insertion/deinsertion in P′3-type Na0.52CrO2 [44]; (d) Corresponding charge–discharge voltage curves of O3-NaCrO2 at the 1st, 50th, 300th cycle and the refreshed cell at 0.1 C rate (10 mA∙g−1) [43]--图2. (a) Na0.84CoO2原始、充电和放电电极的非原位XRD测试[41];(b) 原始Na2Mn3O7在充电/放电状态下的非原位XRD图谱[45];(c) 描述P′3型Na0.52CrO2中可逆K+嵌入/脱嵌的两种可能途径的示意图;(d) O3-NaCrO2在0.1 C (10 mA∙g−1)的速率下第1次、第50次、第300次循环和新组装电池的相应充放电电压曲线[43]--
Figure 3. (a) Operando SXRD results for P2-Na2/3[Ni1/3Mn2/3]O2 cell during the first cycle and the corresponding variation in lattice parameters and (b) predicted structural change of P2/O2-Kx[Ni1/3Mn2/3]O2 as a function of K content [48]--图3. (a) P2-Na2/3[Ni1/3Mn2/3]O2电池在第一个循环期间的操作SXRD结果以及晶格参数的相应变化和(b) 作为K含量函数的P2/O2-Kx[Ni1/3Mn2/3]O2的预测结构变化[48]--
Choi等认为直接使用离子交换,Na金属和K金属会产生易燃的液态Na-K合金。因此,研究人员通过喷雾热解合成了P′2-Na0.67[Ni0.05Mn0.95]O2
[42]
。合成的材料组成钠半电池在1.5~4.3 V的电压范围内循环9圈建立Na+扩散路径,而后第10次充电,材料转变为OP4-Na0.12[Ni0.05Mn0.95]O2。将转变后的材料组装到钾半电池钾化,得到K0.85Na0.12[Ni0.05Mn0.95]O2材料。不同于报道的P′2-Na2/3MnO2在高于4.0 V (相对于Na+/Na)的充电过程中,P′2相几乎消失同时形成新的OP4相,由原位XRD可以得知,属于P′2相的代表性峰(002),(114)和(118)在充放电过程中始终保留,没有转变为OP4相,并且在完成充放电后,峰的偏移回归原位,没有向P′′2相转变,而P′′2相的形成与Jahn-Teller畸变有关。通过第一性原理计算,P′2相较OP4相更稳定,在离子嵌入/脱嵌时不会发生大的体积变化。
Figure 4. (a) Ex-situ XRD patterns of electroformed KMNO electrode [49]. (b) Schematic illustration on the ion exchange process of K-Birnessite samples [52]--图4. (a) 电化学转换的KMNO电极的非原位XRD图[49]。(b) 钾水铝石样品的离子交换过程示意图[52]--
References
Yoshino, A. (2012) The Birth of the Lithium-Ion Battery. Angewandte Chemie International Edition, 51, 5798-5800. >https://doi.org/10.1002/anie.201105006
Nishi, Y. (2001) Lithium Ion Secondary Batteries; Past 10 Years and the Future. Journal of Power Sources, 100, 101-106. >https://doi.org/10.1016/S0378-7753(01)00887-4
Armand, M., Axmann, P., Bresser, D., et al. (2020) Lithium-Ion Batteries–Current State of the Art and Anticipated Developments. Journal of Power Sources, 479, Article 228708. >https://doi.org/10.1016/j.jpowsour.2020.228708
Chua, R., Cai, Y., Kou, Z.K., et al. (2019) 1.3V Superwide Potential Window Sponsored by Na-Mn-O Plates as Cathodes towards Aqueous Rechargeable Sodium-Ion Batteries. Chemical Engineering Journal, 370, 742-748. >https://doi.org/10.1016/j.cej.2019.03.251
Guduru, R. and Icaza, J. (2016) A Brief Review on Multivalent Intercalation Batteries with Aqueous Electrolytes. Nanomaterials, 6, Article 41. >https://doi.org/10.3390/nano6030041
Sonoc, A. and Jeswiet, J. (2014) A Review of Lithium Supply and Demand and a Preliminary Investigation of a Room Temperature Method to Recycle Lithium Ion Batteries to Recover Lithium and Other Materials. Procedia CIRP, 15, 289-293. >https://doi.org/10.1016/j.procir.2014.06.006
Liu, T., Cheng, X., Yu, H., et al. (2019) An Overview and Future Perspectives of Aqueous Rechargeable Polyvalent Ion Batteries. Energy Storage Materials, 18, 68-91. >https://doi.org/10.1016/j.ensm.2018.09.027
Xing, Z., Wang, S., Yu, A., et al. (2018) Aqueous Intercalation-Type Electrode Materials for Grid-Level Energy Storage: Beyond the Limits of Lithium and Sodium. Nano Energy, 50, 229-244. >https://doi.org/10.1016/j.nanoen.2018.05.049
Cai, Y., Kumar, S., Chua, R., et al. (2020) Bronze-Type Vanadium Dioxide Holey Nanobelts as High Performing Cathode Material for Aqueous Aluminium-Ion Batteries. Journal of Materials Chemistry A, 8, 12716-12722. >https://doi.org/10.1039/D0TA03986A
Zhao, J., Ren, H., Liang, Q., et al. (2019) High-Performance Flexible Quasi-Solid-State Zinc-Ion Batteries with Layer-Expanded Vanadium Oxide Cathode and Zinc/Stainless Steel Mesh Composite Anode. Nano Energy, 62, 94-102. >https://doi.org/10.1016/j.nanoen.2019.05.010
Ren, H., Zhao, J., Yang, L., et al. (2019) Inverse Opal Manganese Dioxide Constructed by Few-Layered Ultrathin Nanosheets as High-Performance Cathodes for Aqueous Zinc-Ion Batteries. Nano Research, 12, 1347-1353. >https://doi.org/10.1007/s12274-019-2303-1
Yuan, D., Manalastas, W., Zhang, L., et al. (2019) Lignin@Nafion Membranes Forming Zn Solid-Electrolyte Interfaces Enhance the Cycle Life for Rechargeable Zinc-Ion Batteries. ChemSusChem, 12, 4889-4900. >https://doi.org/10.1002/cssc.201901409
Kumar, S., Verma, V., Chua, R., et al. (2020) Multiscalar Investigation of FeVO
4Conversion Cathode for a Low Concentration Zn(CF
3SO
3)
2Rechargeable Zn-Ion Aqueous Battery. Batteries&Supercaps, 3, 619-630. >https://doi.org/10.1002/batt.202000018
Canepa, P., Sai Gautam, G., Hannah, D.C., et al. (2017) Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chemical Reviews, 117, 4287-4341. >https://doi.org/10.1021/acs.chemrev.6b00614
Demir-Cakan, R., Palacin, M.R. and Croguennec, L. (2019) Rechargeable Aqueous Electrolyte Batteries: From Univalent to Multivalent Cation Chemistry. Journal of Materials Chemistry A, 7, 20519-20539. >https://doi.org/10.1039/C9TA04735B
Helbig, C., Bradshaw, A.M., Wietschel, L., et al. (2018) Supply Risks Associated with Lithium-Ion Battery Materials. Journal of Cleaner Production, 172, 274-286. >https://doi.org/10.1016/j.jclepro.2017.10.122
Boyd, S. and Augustyn, V. (2018) Transition Metal Oxides for Aqueous Sodium-Ion Electrochemical Energy Storage. Inorganic Chemistry Frontiers, 5, 999-1015. >https://doi.org/10.1039/C8QI00148K
Hosaka, T., Shimamura, T., Kubota, K., et al. (2019) Polyanionic Compounds for Potassium-Ion Batteries. The Chemical Record, 19, 735-745. >https://doi.org/10.1002/tcr.201800143
Kubota, K., Dahbi, M., Hosaka, T., et al. (2018) Towards K-Ion and Na-Ion Batteries as “Beyond Li-Ion”. The Chemical Record, 18, 459-479. >https://doi.org/10.1002/tcr.201700057
Duan, L., Xu, J., Xu, Y., et al. (2023) Cocoon-Shaped P3-Type K
0.5Mn
0.7Ni
0.3O
2as an Advanced Cathode Material for Potassium-Ion Batteries. Journal of Energy Chemistry, 76, 332-338. >https://doi.org/10.1016/j.jechem.2022.10.006
Duan, L., Shao, C., Liao, J., et al. (2024) A P2/P3 Biphasic Layered Oxide Composite as a High-Energy and Long-Cycle-Life Cathode for Potassium-Ion Batteries. Angewandte Chemie-International Edition, 63, e202400868. >https://doi.org/10.1002/anie.202400868
Yang, S., Min, X., Yang, B., et al. (2024) Co-Doped P3 Type K
0.5Mn
1-xCo
xO
2(x≤0.5) Cathodes for Long Cycle Life Potassium Ion Battery. Journal of Physics and Chemistry of Solids, 188, Article 111924. >https://doi.org/10.1016/j.jpcs.2024.111924
Zhao, Z., Sun, Y., Pan, Y., et al. (2023) A New Mn-Based Layered Cathode with Enlarged Interlayer Spacing for Potassium Ion Batteries. Journal of Colloid and Interface Science, 652, 231-239. >https://doi.org/10.1016/j.jcis.2023.08.055
Duan, L., Tang, H., Xu, X., et al. (2023) MnFe Prussian Blue Analogue-Derived P3-K
0.5Mn
0.67Fe
0.33O
1.95N
0.05Cathode Material for High-Performance Potassium-Ion Batteries. Energy Storage Materials, 62, Article 102950. >https://doi.org/10.1016/j.ensm.2023.102950
Zhang, H., Gao, Y., Peng, J., et al. (2023) Prussian Blue Analogues with Optimized Crystal Plane Orientation and Low Crystal Defects toward 450 Wh kg
-1Alkali-Ion Batteries. Angewandte Chemie-International Edition, 62, e202303953. >https://doi.org/10.1002/anie.202303953
Zhou, Q., Liu, H., Dou, S., et al. (2024) Defect-Free Prussian Blue Analogue as Zero-Strain Cathode Material for High-Energy-Density Potassium-Ion Batteries. ACS Nano Journal, 18, 7287-7297. >https://doi.org/10.1021/acsnano.4c00251
Hu, Y., Tang, W., Yu, Q., et al. (2020) Novel Insoluble Organic Cathodes for Advanced Organic K-Ion Batteries. Advanced Functional Materials, 30, Article 2000675. >https://doi.org/10.1002/adfm.202000675
Mathew, V., Kim, S., Kang, J., et al. (2014) Amorphous Iron Phosphate: Potential Host for Various Charge Carrier Ions. NPG Asia Materials, 6, e138. >https://doi.org/10.1038/am.2014.98
Obrezkov, F.A., Ramezankhani, V., Zhidkov, I., et al. (2019) High-Energy and High-Power-Density Potassium Ion Batteries Using Dihydrophenazine-Based Polymer as Active Cathode Material. The Journal of Physical Chemistry Letters, 10, 5440-5445. >https://doi.org/10.1021/acs.jpclett.9b02039
Han, J., Li, G, N., Liu, F., et al. (2017) Investigation of K
3V
2(PO
4)
3/C Nanocomposites as High-Potential Cathode Materials for Potassium-Ion Batteries. Chemical Communications, 53, 1805-1808. >https://doi.org/10.1039/C6CC10065A
Zhang, W., Huang, W. and Zhang, Q. (2021) Organic Materials as Electrodes in Potassium-Ion Batteries. Chemistry—A European Journal, 27, 6131-6144. >https://doi.org/10.1002/chem.202005259
Zhao, Q., Lu, Y. and Chen, J. (2017) Advanced Organic Electrode Materials for Rechargeable Sodium-Ion Batteries. Advanced Energy Materials, 7, Article 1601792. >https://doi.org/10.1002/aenm.201601792
Kapaev, R.R. and Troshin, P.A. (2020) Organic-Based Active Electrode Materials for Potassium Batteries: Status and Perspectives. Journal of Materials Chemistry A, 8, 17296-17325. >https://doi.org/10.1039/D0TA04741D
Zheng, Y., Xie, H., Li, J., et al. (2024) Insights into the Jahn-Teller Effect in Layered Oxide Cathode Materials for Potassium-Ion Batteries. Advanced Energy Materials, 14, Article 2400461. >https://doi.org/10.1002/aenm.202400461
Wang, X., Xiao, Z., Han, K., et al. (2023) Advances in Fine Structure Optimizations of Layered Transition-Metal Oxide Cathodes for Potassium-Ion Batteries. Advanced Energy Materials, 13, Article 2202861. >https://doi.org/10.1002/aenm.202202861
Nathan, M., Yu, H., Kim, G., et al. (2022) Recent Advances in Layered Metal-Oxide Cathodes for Application in Potassium-Ion Batteries. Advanced Science, 9, Article 2105882. >https://doi.org/10.1002/advs.202105882
Oh, S.M., Myung, S.T., Hassoun, J., et al. (2012) Reversible NaFePO
4Electrode for Sodium Secondary Batteries. Electrochemistry Communications, 22, 149-152. >https://doi.org/10.1016/j.elecom.2012.06.014
Jian, Z., Yu, H. and Zhou, H. (2013) Designing High-Capacity Cathode Materials for Sodium-Ion Batteries. Electrochemistry Communications, 34, 215-218. >https://doi.org/10.1016/j.elecom.2013.06.017
Kim, H., Kwon, D., Kim, J., et al. (2020) Na+ Redistribution by Electrochemical Na+/K+ Exchange in Layered NaxNi
2SbO
6. Chemistry of Materials, 32, 4312-4323. >https://doi.org/10.1021/acs.chemmater.0c01152
Shirane, T., Kanno, R., Kawamoto, Y., et al. (1995) Reversible NaFePO
4Electrode for Sodium Secondary Batteries. Solid State Ionics, 79, 227-233. >https://doi.org/10.1016/0167-2738(95)00066-F
Sada, K., Senthilkumar, B. and Barpanda, P. (2017) Electrochemical Potassium-Ion Intercalation in NaxCoO
2: A Novel Cathode Material for Potassium-Ion Batteries. Chemical Communications, 53, 8588-8591. >https://doi.org/10.1039/C7CC02791E
Choi, J.U., Ji, P.Y., Jo, J.H., et al. (2020) An Optimized Approach toward High Energy Density Cathode Material for K-Ion Batteries. Energy Storage Materials, 27, 342-351. Https://doi.org/10.1016/j.ensm.2020.02.025
Hwang, J.Y., Kim, J., Yu, T.Y., et al. (2018) Development of P3-K
0.69CrO
2as an Ultra-High-Performance Cathode Material for K-Ion Batteries. Energy&Environmental Science, 11, 2821-2827. >https://doi.org/10.1039/c8ee01365a
Naveen, N., Park, W.B., Han, S.C., et al. (2018) Reversible K+ Insertion/Deinsertion and Concomitant Na+ Redistribution in P’3-Na
0.52CrO
2for High-Performance Potassium-Ion Battery Cathodes. Chemistry of Materials, 30, 2049-2057. >https://doi.org/10.1021/acs.chemmater.7b05329
Sada, K., Senthilkumar, B. and Barpanda, P. (2018) Potassium-Ion Intercalation Mechanism in Layered Na
2Mn
3O
7. ACS Applied Energy Materials, 1, 5410-5416. >https://doi.org/10.1021/acsaem.8b01016
Zhang, H., Xi, K., Jiang, K., et al. (2019) Enhanced K-Ion Kinetics in a Layered Cathode for Potassium Ion Batteries. Chemical Communications, 55, 7910-7913. >https://doi.org/10.1039/C9CC03156A
Nathan, M.G.T., Naveen, N., Park, W.B., et al. (2019) Fast Chargeable P2-K
-2/3[Ni
1/3Mn
2/3]O
2for Potassium Ion Battery Cathodes. Journal of Power Sources, 438, Article 226992. >https://doi.org/10.1016/j.jpowsour.2019.226992
Jo, J.H., Choi, J.U., Park, Y.J., et al. (2020) P2-K
0.75[Ni
1/3Mn
2/3]O
2Cathode Material for High Power and Long Life Potassium-Ion Batteries. Advanced Energy Materials, 10, Article No. 1903605. >https://doi.org/10.1002/aenm.201903605
Bhatia, A., Pereira-Ramos, J., Emery, N., et al. (2020) An Exploratory Investigation of Spinel LiMn
1.5Ni
0.5O
4as Cathode Material for Potassium-Ion Battery. ChemElectroChem, 7, 3420-3428. >https://doi.org/10.1002/celc.202000462
Sohn, W., Chae, J.S., Lim, G.H., et al. (2022) Ion-Exchange-Assisted Li
0.27K
0.72Ni
0.6Co
0.2Mn
0.2O
2Cathode in Potassium-Ion Batteries. Journal of Alloys and Compounds, 898, Article 162904. >https://doi.org10.1016/j.jallcom.2021.162904
Nathan, M.G.T., Park, W.B., Naveen, N., et al. (2020) A Comparison of As-Synthesized P2-K
0.70[Cr
0.85Sb
0.15]O
2and Ion-Exchanged P2-K
0.62Na
0.08[Cr
0.85Sb
0.15]O
2Demonstrates the Superiority of the Latter as a Potassium-Ion Battery Cathode. Journal of the Electrochemical Society, 167, Article 100507. >https://doi.org/10.1149/1945-7111/ab9568
Gao, A., Li, M., Guo, N., et al. (2019) K-Birnessite Electrode Obtained by Ion Exchange for Potassium-Ion Batteries: Insight into the Concerted Ionic Diffusion and K Storage Mechanism. Advanced Energy Materials, 9, Article 1802739. >https://doi.org/10.1002/aenm.201802739