Figure 1. (a) XRD pattern of Co-ZIF, Ni/Co-ZIF and Co porphyrin@Ni/Co-ZIF; SEM images of Co-ZIF (b), Ni/Co-ZIF (c) and Co porphyrin@Ni/Co-ZIF (d)--图1. (a) Co-ZIF, Ni/Co-ZIF和钴卟啉@Ni/Co-ZIF的XRD图;Co-ZIF (b),Ni/Co-ZIF (c) 和钴卟啉@Ni/Co-ZIF (d) 的SEM图--3.2. 电化学性质
采用三电极体系测试了钴卟啉@Ni/Co-ZIF在碱性条件下的OER性能,在相同条件下,测试了Co-ZIF和Ni/Co-ZIF的性能作为对照,结果如
图2
所示。
图2(a)
是三个样品分别在0.5 M KOH电解液中测得的LSV曲线,扫速为10 mV s−1,实验所得的曲线均进行了补偿校准。由
图2(a)
可知,与Co-ZIF和Ni/Co-ZIF相比,钴卟啉@Ni/Co-ZIF的过电位要低得多。这表明催化剂负载钴卟啉后OER性能得到提升。
图2(b)
是三个样品分别在10 mA cm−2和50 mA cm−2处过电位的柱状图,其中Co-ZIF和Ni/Co-ZIF在10 mA cm−2电流密度下的过电位为447和401 mV,而钴卟啉@Ni/Co-ZIF在10 mA cm−2电流密度下的过电位为345 mV,接近于商用IrO2催化剂(310 mV)
[16]
。随着电流密度的增大到50 mA cm−2,钴卟啉@Ni/Co-ZIF的过电位也随之增大,但仍然小于Co-ZIF和Ni/Co-ZIF的过电位。
Figure 2. (a) Polarization curves of Co-ZIF, Ni/Co-ZIF and Co porphyrin@Ni/Co-ZIF; (b) Overpotential at 10 and 50 mA cm−2; (c) Tafel graph; (d) Nyquist plots--图2. Co-ZIF, Ni/Co-ZIF和钴卟啉@Ni/Co-ZIF的极化曲线(a);在10和50 mA cm−2处的过电位(b);Tafel 曲线图(c)和Nyquist曲线(d)--
Figure 3. (a)~(c) CV curves in non-faradic region of Co-ZIF, Ni/Co-ZIF and Co porphyrin@Ni/Co-ZIF; (d) Relationship between current density and scan rate; (e) LSV diagram before and after CV cycles of Co porphyrin@Ni/Co-ZIF; (f) i-t curve of Co porphyrin@Ni/Co-ZIF--图3. (a)~(c) 不同扫描速率下Co-ZIF、Ni/Co-ZIF和钴卟啉@Ni/Co-ZIF非法拉第区的CV曲线;(d) 电流密度与扫速的关系图;(e) CV循环前后的钴卟啉@Ni/Co-ZIF的LSV曲线;(f) 钴卟啉@Ni/Co-ZIF的i-t曲线--4. 结论
本文以沸石咪唑酯骨架结构材料为基底,成功将钴卟啉负载在材料表面形成钴卟啉@Ni/Co-ZIF催化材料。钴卟啉的成功掺杂使得该材料的电催化活性远大于Ni/Co-ZIF和Co-ZIF催化剂。电化学测试表明钴卟啉@Ni/Co-ZIF在碱性条件下具有较好的OER催化性能,在10 mA cm−2电流密度下的过电位为345 mV,接近于商用IrO2催化剂(310 mV),Tafel斜率为95 mV dec−1,且该材料具有较好的电化学稳定性。该材料的设计合成为构筑高性能,低成本的非贵金属OER催化剂提供了更多思路。
References
Peng, L. and Wei, Z. (2020) Catalyst Engineering for Electrochemical Energy Conversion from Water to Water: Water Electrolysis and the Hydrogen Fuel Cell. Engineering, 6, 653-679. >https://doi.org/10.1016/j.eng.2019.07.028
Sun, L., Han, L., Huang, J., Luo, X. and Li, X. (2022) Single-Atom Catalysts for Photocatalytic Hydrogen Evolution: A Review. International Journal of Hydrogen Energy, 47, 17583-17599. >https://doi.org/10.1016/j.ijhydene.2022.03.259
Risch, M. (2023) Reporting Activities for the Oxygen Evolution Reaction. Communications Chemistry, 6, Article No. 221. >https://doi.org/10.1038/s42004-023-01024-y
Ma, W., Zhang, X., Li, W., Jiao, M., Zhang, L., Ma, R., et al. (2023) Advanced Pt-Based Electrocatalysts for the Hydrogen Evolution Reaction in Alkaline Medium. Nanoscale, 15, 11759-11776. >https://doi.org/10.1039/d3nr01940c
Lee, S., Lee, Y., Lee, G. and Soon, A. (2022) Activated Chemical Bonds in Nanoporous and Amorphous Iridium Oxides Favor Low Overpotential for Oxygen Evolution Reaction. Nature Communications, 13, Article No. 3171. >https://doi.org/10.1038/s41467-022-30838-y
Zhang, T., Zhao, Y., Liu, F., Zheng, M., Shi, K., Liu, J., et al. (2024) Novel Cobalt Nanorods@ Cobalt-Platinum Nanoparticles for Electrocatalytic Hydrogen Evolution Reactions and Oxygen Evolution Reactions Study. International Journal of Hydrogen Energy, 58, 646-656. >https://doi.org/10.1016/j.ijhydene.2024.01.171
Wang, J., Xuan, H., Meng, L., Liang, X., Li, Y., Yang, J., et al. (2023) N, S Co-Doped NiCo
2O
4@comoo4/NF Hierarchical Heterostructure as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. International Journal of Hydrogen Energy, 48, 8144-8155. >https://doi.org/10.1016/j.ijhydene.2022.11.253
Han, Z., Song, X., Chen, Z., Pan, Y., Lai, X., Wang, D., et al. (2024) Half Etching of ZIF-67 Towards Open Hollow Nanostructure with Boosted Absorption Ability for Toxic Smoke and Fume in Epoxy Composites. Sustainable Materials and Technologies, 41, e01024. >https://doi.org/10.1016/j.susmat.2024.e01024
Fan, H., Ma, F., Liu, Z., Wang, W., Liu, Z., Liang, X., et al. (2024) ZIF-Derived N-Doped Carbon Nanorods Supporting Bimetallic CoFe Single-Atoms/nanoclusters as Bifunctional Oxygen Electrocatalysts for Stable Zn-Air Batteries. Rare Metals. >https://doi.org/10.1007/s12598-024-02676-y
Zhang, H., Zhao, M. and Lin, Y.S. (2019) Stability of ZIF-8 in Water under Ambient Conditions. Microporous and Mesoporous Materials, 279, 201-210. >https://doi.org/10.1016/j.micromeso.2018.12.035
Butt, F.S., Safdar, M., Lewis, A., Mazlan, N.A., Radacsi, N., Fan, X., et al. (2023) Superhydrophobic ZIF-67 with Exceptional Hydrostability. Materials Today Advances, 20, Article 100448. >https://doi.org/10.1016/j.mtadv.2023.100448
Singh, R. and Mukherjee, A. (2019) Metalloporphyrin Catalyzed C-H Amination. ACS Catalysis, 9, 3604-3617. >https://doi.org/10.1021/acscatal.9b00009
Wang, M., Zhang, M., Song, W., Zhou, L., Wang, X. and Tang, Y. (2022) Heteroatom-Doped Amorphous Cobalt-Molybdenum Oxides as a Promising Catalyst for Robust Hydrogen Evolution. Inorganic Chemistry, 61, 5033-5039. >https://doi.org/10.1021/acs.inorgchem.1c03976
Liang, Z., Guo, H., Zhou, G., Guo, K., Wang, B., Lei, H., et al. (2021) Metal-Organic-Framework-Supported Molecular Electrocatalysis for the Oxygen Reduction Reaction. Angewandte Chemie International Edition, 60, 8472-8476. >https://doi.org/10.1002/anie.202016024
Andres-Garcia, E., Oar-Arteta, L., Gascon, J. and Kapteijn, F. (2019) ZIF-67 as Silver-Bullet in Adsorptive Propane/Propylene Separation. Chemical Engineering Journal, 360, 10-14. >https://doi.org/10.1016/j.cej.2018.11.118
Trotochaud, L., Young, S.L., Ranney, J.K. and Boettcher, S.W. (2014) Nickel-Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. Journal of the American Chemical Society, 136, 6744-6753. >https://doi.org/10.1021/ja502379c
Anantharaj, S. and Noda, S. (2022) How Properly Are We Interpreting the Tafel Lines in Energy Conversion Electrocatalysis? Materials Today Energy, 29, Article 101123. >https://doi.org/10.1016/j.mtener.2022.101123
Lin, D. and Lasia, A. (2017) Electrochemical Impedance Study of the Kinetics of Hydrogen Evolution at a Rough Palladium Electrode in Acidic Solution. Journal of Electroanalytical Chemistry, 785, 190-195. >https://doi.org/10.1016/j.jelechem.2016.12.037
Li, F., Wang, P., Huang, X., Young, D.J., Wang, H., Braunstein, P., et al. (2019) Large-Scale, Bottom-Up Synthesis of Binary Metal-Organic Framework Nanosheets for Efficient Water Oxidation. Angewandte Chemie International Edition, 58, 7051-7056. >https://doi.org/10.1002/anie.201902588
Jia, L., Liu, B., Zhao, Y., Chen, W., Mou, D., Fu, J., et al. (2020) Structure Design of MoS2@Mo
2C on Nitrogen-Doped Carbon for Enhanced Alkaline Hydrogen Evolution Reaction. Journal of Materials Science, 55, 16197-16210. >https://doi.org/10.1007/s10853-020-05107-2