Double Forcing Polynomials of a Hexagonal System Generated by Seven Benzene Rings
A matching is a set of edges, where any two edges have no common vertices. For a match M in graph G, if the edges in M can pair all the vertices of G in pairs, the match is said to be a perfect match. The number of hexagonal systems with perfect matchings among the hexagonal systems generated by seven benzene rings is 190. This paper calculates the di-forcing polynomials of the hexagonal system generated by these 190 seven benzene rings. At the same time, the discrimination of di-forcing polynomials, forced polynomials, anti-forced polynomials, number of perfect matches, degrees of freedom and anti-degrees of freedom for graphs is statistically compared.
Perfect Match
完美匹配在有机化学中有着重要应用,化学分子的凯库勒结构就是图的完美匹配。凯库勒结构与分子的稳定性密切相关。Lovász等
凯库勒结构的内自由度概念是由Randic和Klein
Vukicevic, D.和Trinajstic, N.
刘雨童,马聪聪,姚海元
P. Hansen和M. Zheng
有向简单图G为一个有序二元组 ,将 与 分别表示图G的顶点构成的集合与图G的边构成的集合。M称为图G的匹配,如果M的元素均为G的边,且M中任意两个边在G中均不相邻(没有公共端点)。与匹配M中的边关联的顶点称作被M覆盖。匹配M覆盖图G的所有顶点时该匹配称为完美匹配。若M是图G的一个完美匹配,且M的子集S不包含在G的其他完美匹配中,则称S为M的一个强迫集。M的一个包含边数最小的强迫集称作最小强迫集。最小强迫集中元素的个数称作M的强迫数,记为 。图G中所有完美匹配的强迫数的最大值,称作图G的最大强迫数,记为 ;所有完美匹配的强迫数的最小值,称作图G的最小强迫数,记为 。图G完美匹配的强迫数之和称作图G的自由度,也叫内自由度,记为 。图的一个完美匹配对应一个幂为该匹配强迫数,同时系数为1的单项式,将每一个完美匹配对应的单项式相加即为强迫多项式。强迫多项式记为 。
定义 1 图G的双强迫多项式:
其中 表示强迫数为i,反强迫数为j的完美匹配的个数。
推论1
表示图G强迫数为i的完美匹配个数; 表示图G反强迫数为i的完美匹配个数。
推论2
推论3
推论4
图的双强迫多项式的求法有两种,即穷举法和整数线性规划法。穷举法需要找到图的所有完美匹配,再从每一个完美匹配中寻找强迫集和反强迫集,从而得到强迫数和反强迫数,最终写出双强迫多项式。穷举法过程复杂较为耗时。下面重点介绍整数线性规划规划法,利用线性规划法求解双强迫多项式。
首先,先生成图G的所有M-交错圈,即生成所有完美匹配中匹配边和非匹配边交替出现的圈。因为每一个连通分支必是M-交错圈,从而得到了所有的连通分支。令 是一个 的矩阵,其中l表示的是M-交错圈的数目,N的每个行向量 对应于一个M-交错圈 的0-1关联向量, 当且仅当 , , 。称N为完美匹配M的强迫系数矩阵。令 , ,其b的维数为l,c的维数为n。因此有整数线性规划(ILP):
(ILP)的最优值即为M的强迫数,最优解x即最小强迫集S的关联向量。恰恰相反,如果在(ILP)上非匹配边位置写1,其他位置写0。即可得到完美匹配的反强迫数。拥有了所有完美匹配及其强迫数与反强迫数,就可写出对应的双强迫多项式。
六角系统是一个2-连通平面二部图,其每个内面是一个单位正六边形,在化学领域研究中有着重要应用。在研究苯类碳氢化合物时,将氢原子忽略不计,苯类碳氢化合物的原子骨架图即对应一个六角系统。其中碳原子即为图中的点,碳原子与碳原子之间的键即为图的边,碳碳双键即为完美匹配的匹配边。化学中已经证明稳定的苯类碳氢化合物一定有凯库勒结构
目前已知七个苯环生成的六角系统个数为331个,其中拥有完美匹配的六角系统的个数为190个
对于没有完美匹配的六角系统我们不再进行研究。文献
利用文献
下面首先来考察双强迫多项式,强迫多项式以及反强迫多项式对六角系统的区分情况。根据
根据双强迫多项式的定义,同时也通过图的对比发现,当两个七个苯环组成的六角系统双强迫多项式相等时,它们的强迫多项式和反强迫多项式一定相等。但是反过来却未必成立。
H | IDF | ADF | ||
H1 | 8 | 8 | 14 | |
H2 | 13 | 25 | 34 | |
H3 | 16 | 31 | 46 | |
H4 | 17 | 34 | 50 | |
H5 | 17 | 34 | 50 | |
H6 | 17 | 33 | 50 | |
H7 | 19 | 38 | 58 | |
H8 | 19 | 38 | 58 | |
H9 | 22 | 60 | 76 | |
H10 | 22 | 60 | 76 | |
H11 | 23 | 62 | 80 | |
H12 | 23 | 62 | 80 | |
H13 | 23 | 62 | 80 | |
H14 | 23 | 62 | 80 | |
H15 | 20 | 56 | 68 | |
H16 | 20 | 56 | 68 | |
H17 | 23 | 64 | 82 | |
H18 | 23 | 64 | 82 | |
H19 | 25 | 72 | 92 | |
H20 | 25 | 72 | 92 | |
H21 | 25 | 72 | 92 | |
H22 | 25 | 72 | 92 | |
H23 | 25 | 68 | 90 | |
H24 | 25 | 68 | 90 | |
H25 | 25 | 68 | 90 | |
H26 | 24 | 66 | 86 | |
H27 | 24 | 66 | 86 | |
H28 | 27 | 78 | 102 | |
H29 | 27 | 78 | 102 | |
H30 | 27 | 78 | 102 | |
H31 | 27 | 78 | 102 | |
H32 | 29 | 86 | 112 | |
H33 | 29 | 86 | 112 | |
H34 | 29 | 86 | 112 | |
H35 | 29 | 86 | 112 | |
H36 | 29 | 86 | 112 | |
H37 | 29 | 86 | 112 | |
H38 | 29 | 102 | 116 | |
H39 | 29 | 102 | 116 | |
H40 | 29 | 102 | 116 | |
H41 | 26 | 74 | 96 | |
H42 | 26 | 74 | 96 | |
H43 | 26 | 74 | 96 | |
H44 | 26 | 74 | 96 | |
H45 | 31 | 108 | 126 | |
H46 | 31 | 108 | 126 | |
H47 | 31 | 108 | 126 | |
H48 | 31 | 108 | 126 | |
H49 | 31 | 108 | 126 | |
H50 | 31 | 108 | 126 | |
H51 | 31 | 108 | 126 | |
H52 | 31 | 108 | 126 | |
H53 | 30 | 90 | 118 | |
H54 | 30 | 90 | 118 | |
H55 | 30 | 90 | 118 | |
H56 | 30 | 90 | 118 | |
H57 | 30 | 90 | 118 | |
H58 | 30 | 90 | 118 | |
H59 | 34 | 118 | 142 | |
H60 | 34 | 118 | 142 | |
H61 | 34 | 118 | 142 | |
H62 | 34 | 118 | 142 | |
H63 | 34 | 118 | 142 | |
H64 | 34 | 118 | 142 | |
H65 | 34 | 118 | 142 | |
H66 | 34 | 118 | 142 | |
H67 | 29 | 86 | 112 | |
H68 | 21 | 61 | 75 | |
H69 | 25 | 73 | 95 | |
H70 | 24 | 68 | 87 | |
H71 | 27 | 78 | 103 | |
H72 | 27 | 78 | 103 | |
H73 | 26 | 76 | 99 | |
H74 | 26 | 76 | 99 | |
H75 | 30 | 112 | 128 | |
H76 | 29 | 85 | 115 | |
H77 | 28 | 82 | 111 | |
H78 | 32 | 116 | 137 | |
H79 | 32 | 116 | 137 | |
H80 | 30 | 90 | 119 | |
H81 | 30 | 90 | 119 | |
H82 | 30 | 90 | 119 | |
H83 | 30 | 90 | 119 | |
H84 | 34 | 126 | 148 | |
H85 | 34 | 126 | 148 | |
H86 | 34 | 126 | 148 | |
H87 | 34 | 126 | 148 | |
H88 | 34 | 126 | 148 | |
H89 | 33 | 120 | 142 | |
H90 | 33 | 122 | 142 | |
H91 | 33 | 122 | 142 | |
H92 | 33 | 120 | 142 | |
H93 | 33 | 120 | 142 | |
H94 | 33 | 120 | 142 | |
H95 | 31 | 93 | 125 | |
H96 | 31 | 93 | 125 | |
H97 | 31 | 93 | 125 | |
H98 | 32 | 118 | 138 | |
H99 | 32 | 118 | 138 | |
H100 | 31 | 114 | 133 | |
H101 | 36 | 132 | 158 | |
H102 | 36 | 132 | 158 | |
H103 | 36 | 132 | 158 | |
H104 | 36 | 132 | 158 | |
H105 | 36 | 132 | 158 | |
H106 | 41 | 186 | 205 | |
H107 | 36 | 132 | 158 | |
H108 | 36 | 132 | 158 | |
H109 | 35 | 134 | 157 | |
H110 | 35 | 134 | 157 | |
H111 | 37 | 142 | 167 | |
H112 | 37 | 142 | 167 | |
H113 | 37 | 142 | 167 | |
H114 | 38 | 146 | 173 | |
H115 | 38 | 146 | 173 | |
H116 | 35 | 121 | 149 | |
H117 | 35 | 121 | 149 | |
H118 | 40 | 184 | 200 |
H | IDF | ADF | ||
H119 | 25 | 90 | 100 | |
H120 | 25 | 90 | 100 | |
H121 | 15 | 42 | 50 | |
H122 | 15 | 42 | 50 | |
H123 | 20 | 56 | 70 | |
H124 | 20 | 56 | 70 | |
H125 | 24 | 72 | 92 | |
H126 | 24 | 72 | 92 | |
H127 | 9 | 18 | 24 | |
H128 | 9 | 18 | 24 | |
H129 | 9 | 18 | 24 | |
H130 | 16 | 32 | 48 | |
H131 | 16 | 32 | 48 | |
H132 | 12 | 24 | 34 | |
H133 | 12 | 24 | 34 | |
H134 | 21 | 60 | 76 | |
H135 | 21 | 60 | 76 | |
H136 | 21 | 60 | 76 | |
H137 | 21 | 60 | 76 | |
H138 | 18 | 48 | 60 | |
H139 | 15 | 30 | 44 | |
H140 | 15 | 30 | 44 | |
H141 | 19 | 53 | 65 | |
H142 | 23 | 67 | 85 | |
H143 | 30 | 112 | 130 | |
H144 | 31 | 114 | 135 | |
H145 | 29 | 106 | 125 | |
H146 | 28 | 96 | 112 | |
H147 | 23 | 64 | 83 | |
H148 | 23 | 62 | 87 | |
H149 | 29 | 102 | 118 | |
H150 | 25 | 73 | 95 | |
H151 | 28 | 96 | 112 | |
H152 | 26 | 76 | 99 | |
H153 | 21 | 57 | 73 | |
H154 | 21 | 58 | 73 | |
H155 | 26 | 76 | 99 | |
H156 | 24 | 70 | 89 | |
H157 | 27 | 95 | 109 | |
H158 | 24 | 70 | 89 | |
H159 | 27 | 94 | 108 | |
H160 | 25 | 72 | 93 | |
H161 | 27 | 94 | 108 | |
H162 | 27 | 94 | 108 | |
H163 | 28 | 98 | 114 | |
H164 | 28 | 98 | 114 | |
H165 | 25 | 72 | 93 | |
H166 | 25 | 72 | 93 | |
H167 | 27 | 94 | 108 | |
H168 | 21 | 54 | 70 | |
H169 | 17 | 34 | 50 | |
H170 | 21 | 54 | 70 | |
H171 | 24 | 68 | 86 | |
H172 | 24 | 68 | 86 | |
H173 | 24 | 68 | 86 | |
H174 | 24 | 68 | 86 | |
H175 | 21 | 58 | 72 | |
H176 | 22 | 60 | 76 | |
H177 | 22 | 60 | 76 | |
H178 | 23 | 66 | 82 | |
H179 | 23 | 66 | 82 | |
H180 | 21 | 58 | 72 | |
H181 | 15 | 29 | 42 | |
H182 | 19 | 49 | 62 | |
H183 | 14 | 27 | 38 | |
H184 | 16 | 39 | 48 | |
H185 | 18 | 44 | 56 | |
H186 | 23 | 67 | 86 | |
H187 | 22 | 63 | 79 | |
H188 | 25 | 86 | 100 | |
H189 | 20 | 52 | 67 | |
H190 | 20 | 55 | 88 |
*后3列数据取自文献
图1. 七个苯环生成的六角系统三种多项式关系图
观察1 当两个由七个苯环组成的六角系统的强迫多项式相等时,其双强迫多项式不一定相等。
H28和H71强迫多项式相同,但二者双强迫多项式不同。
观察2 当两个由七个苯环组成的六角系统的反强迫多项式相等时,双强迫多项式也不一定相等。
H89和H90反强迫多项式相同,双强迫多项式不同。
还存在一种更加特殊的情况。
观察3 当两个由七个苯环组成的六角系统的强迫多项式与反强迫多项式都相等时,双强迫多项式也不一定相等。
H161与H159的强迫多项式和反强迫多项式都相等,但二者的双强迫多项式不相等。由此可得出双强迫多项式虽然计算较为复杂,但相比于强迫多项式和反强迫多项式,具有更好的区分性,根据双强迫多项式能够更加精确的划分六角系统。除了双强迫多项式、强迫多项式、反强迫多项式,还可以考虑另外一些指标的区分情况。
下面以图表形式展现双强迫多项式,强迫多项式,反强迫多项式,完美匹配个数,自由度以及反自由度对由七个苯环组成的六角系统图的区分情况。可以用该性质对图进行区分的打Π,无法利用该性质对图区分打Ο。
H | IDF | ADF | ||||
H1 | Π | Π | Π | Π | Π | Π |
H2 | Π | Π | Π | Π | Π | Ο |
H3 | Π | Π | Π | Ο | Π | Π |
H4 | Ο | Ο | Ο | Ο | Ο | Ο |
H5 | Ο | Ο | Ο | Ο | Ο | Ο |
H6 | Π | Π | Π | Ο | Π | Ο |
H7 | Ο | Ο | Ο | Ο | Ο | Ο |
H8 | Ο | Ο | Ο | Ο | Ο | Ο |
H9 | Ο | Ο | Ο | Ο | Ο | Ο |
H10 | Ο | Ο | Ο | Ο | Ο | Ο |
H11 | Ο | Ο | Ο | Ο | Ο | Ο |
H12 | Ο | Ο | Ο | Ο | Ο | Ο |
H13 | Ο | Ο | Ο | Ο | Ο | Ο |
H14 | Ο | Ο | Ο | Ο | Ο | Ο |
H15 | Ο | Ο | Ο | Ο | Ο | Ο |
H16 | Ο | Ο | Ο | Ο | Ο | Ο |
H17 | Ο | Ο | Ο | Ο | Ο | Ο |
H18 | Ο | Ο | Ο | Ο | Ο | Ο |
H19 | Ο | Ο | Ο | Ο | Ο | Ο |
H20 | Ο | Ο | Ο | Ο | Ο | Ο |
H21 | Ο | Ο | Ο | Ο | Ο | Ο |
H22 | Ο | Ο | Ο | Ο | Ο | Ο |
H23 | Ο | Ο | Ο | Ο | Ο | Ο |
H24 | Ο | Ο | Ο | Ο | Ο | Ο |
H25 | Ο | Ο | Ο | Ο | Ο | Ο |
H26 | Ο | Ο | Ο | Ο | Ο | Ο |
H27 | Ο | Ο | Ο | Ο | Ο | Ο |
H28 | Ο | Ο | Ο | Ο | Ο | Ο |
H29 | Ο | Ο | Ο | Ο | Ο | Ο |
H30 | Ο | Ο | Ο | Ο | Ο | Ο |
H31 | Ο | Ο | Ο | Ο | Ο | Ο |
H32 | Ο | Ο | Ο | Ο | Ο | Ο |
H33 | Ο | Ο | Ο | Ο | Ο | Ο |
H34 | Ο | Ο | Ο | Ο | Ο | Ο |
H35 | Ο | Ο | Ο | Ο | Ο | Ο |
H36 | Ο | Ο | Ο | Ο | Ο | Ο |
H37 | Ο | Ο | Ο | Ο | Ο | Ο |
H38 | Ο | Ο | Ο | Ο | Ο | Ο |
H39 | Ο | Ο | Ο | Ο | Ο | Ο |
H40 | Ο | Ο | Ο | Ο | Ο | Ο |
H41 | Ο | Ο | Ο | Ο | Ο | Ο |
H42 | Ο | Ο | Ο | Ο | Ο | Ο |
H43 | Ο | Ο | Ο | Ο | Ο | Ο |
H44 | Ο | Ο | Ο | Ο | Ο | Ο |
H45 | Ο | Ο | Ο | Ο | Ο | Ο |
H46 | Ο | Ο | Ο | Ο | Ο | Ο |
H47 | Ο | Ο | Ο | Ο | Ο | Ο |
H48 | Ο | Ο | Ο | Ο | Ο | Ο |
H49 | Ο | Ο | Ο | Ο | Ο | Ο |
H50 | Ο | Ο | Ο | Ο | Ο | Ο |
H51 | Ο | Ο | Ο | Ο | Ο | Ο |
H52 | Ο | Ο | Ο | Ο | Ο | Ο |
H53 | Ο | Ο | Ο | Ο | Ο | Ο |
H54 | Ο | Ο | Ο | Ο | Ο | Ο |
H55 | Ο | Ο | Ο | Ο | Ο | Ο |
H56 | Ο | Ο | Ο | Ο | Ο | Ο |
H57 | Ο | Ο | Ο | Ο | Ο | Ο |
H58 | Ο | Ο | Ο | Ο | Ο | Ο |
H59 | Ο | Ο | Ο | Ο | Ο | Ο |
H60 | Ο | Ο | Ο | Ο | Ο | Ο |
H61 | Ο | Ο | Ο | Ο | Ο | Ο |
H62 | Ο | Ο | Ο | Ο | Ο | Ο |
H63 | Ο | Ο | Ο | Ο | Ο | Ο |
H64 | Ο | Ο | Ο | Ο | Ο | Ο |
H65 | Ο | Ο | Ο | Ο | Ο | Ο |
H66 | Ο | Ο | Ο | Ο | Ο | Ο |
H67 | Ο | Ο | Ο | Ο | Ο | |
H68 | Π | Π | Π | Ο | Π | Π |
H69 | Π | Π | Π | Ο | Ο | Ο |
H70 | Π | Π | Π | Ο | Ο | Ο |
H71 | Ο | Ο | Ο | Ο | Ο | Ο |
H72 | Ο | Ο | Ο | Ο | Ο | Ο |
H73 | Ο | Ο | Ο | Ο | Ο | Ο |
H74 | Ο | Ο | Ο | Ο | Ο | Ο |
H75 | Π | Π | Π | Ο | Ο | Π |
H76 | Π | Π | Π | Ο | Π | Π |
H77 | Π | Π | Π | Ο | Π | Π |
H78 | Ο | Ο | Ο | Ο | Ο | Ο |
H79 | Ο | Ο | Ο | Ο | Ο | Ο |
H80 | Ο | Ο | Ο | Ο | Ο | Ο |
H81 | Ο | Ο | Ο | Ο | Ο | Ο |
H82 | Ο | Ο | Ο | Ο | Ο | Ο |
H83 | Ο | Ο | Ο | Ο | Ο | Ο |
H84 | Π | Ο | Π | Ο | Ο | Ο |
H85 | Ο | Ο | Ο | Ο | Ο | Ο |
H86 | Ο | Ο | Ο | Ο | Ο | Ο |
H87 | Ο | Ο | Ο | Ο | Ο | Ο |
H88 | Ο | Ο | Ο | Ο | Ο | Ο |
H89 | Ο | Ο | Ο | Ο | Ο | Ο |
H90 | Ο | Ο | Ο | Ο | Ο | Ο |
H91 | Ο | Ο | Ο | Ο | Ο | Ο |
H92 | Ο | Ο | Ο | Ο | Ο | Ο |
H93 | Ο | Ο | Ο | Ο | Ο | Ο |
H94 | Ο | Ο | Ο | Ο | Ο | Ο |
H95 | Ο | Ο | Ο | Ο | Ο | Ο |
H96 | Ο | Ο | Ο | Ο | Ο | Ο |
H97 | Ο | Ο | Ο | Ο | Ο | Ο |
H98 | Ο | Ο | Ο | Ο | Ο | Ο |
H99 | Ο | Ο | Ο | Ο | Ο | Ο |
H100 | Π | Π | Π | Ο | Ο | Π |
H101 | Ο | Ο | Ο | Ο | Ο | Ο |
H102 | Ο | Ο | Ο | Ο | Ο | Ο |
H103 | Ο | Ο | Ο | Ο | Ο | Ο |
H104 | Ο | Ο | Ο | Ο | Ο | Ο |
H105 | Ο | Ο | Ο | Ο | Ο | Ο |
H106 | Π | Π | Π | Π | Π | Π |
H107 | Ο | Ο | Ο | Ο | Ο | Ο |
H108 | Ο | Ο | Ο | Ο | Ο | Ο |
H109 | Ο | Ο | Ο | Ο | Ο | Ο |
H110 | Ο | Ο | Ο | Ο | Ο | Ο |
H111 | Ο | Ο | Ο | Ο | Ο | Ο |
H112 | Ο | Ο | Ο | Ο | Ο | Ο |
H113 | Ο | Ο | Ο | Ο | Ο | Ο |
H114 | Ο | Ο | Ο | Ο | Ο | Ο |
H115 | Ο | Ο | Ο | Ο | Ο | Ο |
H116 | Ο | Ο | Ο | Ο | Ο | Ο |
H117 | Ο | Ο | Ο | Ο | Ο | Ο |
H118 | Π | Π | Π | Π | Π | Π |
H119 | Ο | Ο | Ο | Ο | Ο | Ο |
H120 | Ο | Ο | Ο | Ο | Ο | Ο |
H121 | Ο | Ο | Ο | Ο | Ο | Ο |
H122 | Ο | Ο | Ο | Ο | Ο | Ο |
H123 | Ο | Ο | Ο | Ο | Ο | Ο |
H124 | Ο | Ο | Ο | Ο | Ο | Ο |
H125 | Ο | Ο | Ο | Ο | Ο | Ο |
H126 | Ο | Ο | Ο | Ο | Ο | Ο |
H127 | Ο | Ο | Ο | Ο | Ο | Ο |
H128 | Ο | Ο | Ο | Ο | Ο | Ο |
H129 | Ο | Ο | Ο | Ο | Ο | Ο |
H130 | Ο | Ο | Ο | Ο | Ο | Ο |
H131 | Ο | Ο | Ο | Ο | Ο | Ο |
H132 | Ο | Ο | Ο | Ο | Ο | Ο |
H133 | Ο | Ο | Ο | Ο | Ο | Ο |
H134 | Ο | Ο | Ο | Ο | Ο | Ο |
H135 | Ο | Ο | Ο | Ο | Ο | Ο |
H136 | Π | Ο | Ο | Ο | Ο | Ο |
H137 | Ο | Ο | Ο | Ο | Ο | Ο |
H138 | Ο | Π | Π | Ο | Π | Π |
H139 | Π | Ο | Ο | Ο | Ο | Ο |
H140 | Π | Ο | Ο | Ο | Ο | Ο |
H141 | Π | Π | Π | Ο | Π | Π |
H142 | Π | Π | Π | Ο | Ο | Π |
H143 | Π | Π | Π | Ο | Ο | Π |
H144 | Ο | Π | Π | Ο | Ο | Π |
H145 | Π | Π | Π | Ο | Π | Ο |
H146 | Π | Ο | Ο | Ο | Ο | Ο |
H147 | Π | Π | Π | Ο | Ο | Π |
H148 | Π | Π | Π | Ο | Ο | Ο |
H149 | Ο | Π | Π | Ο | Ο | Ο |
H150 | Ο | Π | Π | Ο | Ο | Ο |
H151 | Π | Ο | Ο | Ο | Ο | Ο |
H152 | Π | Ο | Ο | Ο | Ο | Ο |
H153 | Ο | Π | Ο | Ο | Π | Ο |
H154 | Π | Ο | Ο | Ο | Ο | Ο |
H155 | Π | Ο | Ο | Ο | Ο | Ο |
H156 | Π | Ο | Π | Ο | Ο | Ο |
H157 | Π | Π | Π | Ο | Π | Π |
H158 | Ο | Ο | Π | Ο | Ο | Ο |
H159 | Ο | Ο | Ο | Ο | Ο | Ο |
H160 | Ο | Ο | Ο | Ο | Ο | Ο |
H161 | Ο | Ο | Ο | Ο | Ο | Ο |
H162 | Ο | Ο | Ο | Ο | Ο | Ο |
H163 | Ο | Ο | Ο | Ο | Ο | Ο |
H164 | Ο | Ο | Ο | Ο | Ο | Ο |
H165 | Ο | Ο | Ο | Ο | Ο | Ο |
H166 | Ο | Ο | Ο | Ο | Ο | Ο |
H167 | Π | Ο | Ο | Ο | Ο | Ο |
H168 | Ο | Ο | Ο | Ο | Ο | Ο |
H169 | Ο | Π | Π | Ο | Ο | Ο |
H170 | Ο | Ο | Ο | Ο | Ο | Ο |
H171 | Ο | Ο | Ο | Ο | Ο | Ο |
H172 | Ο | Ο | Ο | Ο | Ο | Ο |
H173 | Ο | Ο | Ο | Ο | Ο | Ο |
H174 | Ο | Ο | Ο | Ο | Ο | Ο |
H175 | Ο | Ο | Ο | Ο | Ο | Ο |
H176 | Ο | Ο | Ο | Ο | Ο | Ο |
H177 | Ο | Ο | Ο | Ο | Ο | Ο |
H178 | Π | Ο | Ο | Ο | Ο | Ο |
H179 | Π | Ο | Ο | Ο | Ο | Ο |
H180 | Π | Ο | Ο | Ο | Ο | Ο |
H181 | Π | Π | Π | Ο | Π | Π |
H182 | Π | Π | Π | Ο | Π | Π |
H183 | Π | Π | Π | Π | Π | Π |
H184 | Π | Π | Π | Ο | Π | Ο |
H185 | Π | Π | Π | Ο | Π | Π |
H186 | Π | Π | Π | Ο | Ο | Ο |
H187 | Π | Π | Π | Ο | Π | Π |
H188 | Π | Π | Π | Ο | Ο | Ο |
H189 | Ο | Π | Π | Ο | Π | Π |
H190 | Ο | Π | Π | Ο | Π | Π |
*后5列数据取自文献
由
观察4 按照区分度排序,双强迫多项式 > 反强迫多项式 > 强迫多项式 >> 反自由度 > 自由度 >> 完美匹配个数。
看出双强迫多项式可被区分图的数量最多,说明双强迫多项式对图的区分度最高。同时由可被区分百分比可以看出,双强迫多项式、强迫多项式和反强迫多项式三者区分百分比较为接近,且可区分的图较多。自由度与反自由度的区分百分比也较为接近对图的区分效果一般。完美匹配个数区分百分比较低,仅能对个别图进行区分。
同时,由可被区分类数可以发现190个由七个苯环生成的六角系统有种类最多的双强迫多项式,强迫多项式、反强迫多项式、自由度和反自由度类数适中,完美匹配个数的类数最少。
国家自然科学基金(12161081)。