Figure 2. The molecular adsorption structures of H2 on Al13Cu--图2. H2在Al13Cu上的分子吸附结构--Table 1. The distance and binding energy of H2 on Al13Cu clusterTable 1. The distance and binding energy of H2 on Al13Cu cluster 表1. H2到Al13Cu团簇的距离及结合能
References
阮文, 冯五强, 温在国, 陆彪, 吴永波, 陈银坤. 团簇的结构及储氢性能研究[J]. 井冈山大学(自然科学版), 2019, 40(1): 5-8+18.
阮文, 方子剑, 冯五强, 林雪麒, 温在国. 团簇的结构及储氢性能理论研究[J]. 四川大学学报(自然科学版), 2020, 57(1): 147-151.
郭欢欢. 碱金属掺杂硼团簇储氢性能的理论研究[D]: [硕士学位论文]. 郑州: 河南大学, 2016.
Jin, X., Qi, P., Yang, H., Zhang, Y., Li, J. and Chen, H. (2016) Enhanced Hydrogen Adsorption on Li-Coated B
12C
6N
6. The Journal of Chemical Physics, 145, Article ID: 164301. >https://doi.org/10.1063/1.4964394
李文杰, 杨慧慧, 陈宏善. H
2在团簇解离吸附的理论研究[J]. 物理学报, 2013, 62(5): 154-160.
Yang, H., Zhang, Y. and Chen, H. (2014) Dissociation of H
2on Carbon Doped Aluminum Cluster Al
6C. The Journal of Chemical Physics, 141, Article ID: 064302. >https://doi.org/10.1063/1.4891860
Li, K., Yang, C., Wang, M., Ma, X. and Wang, L. (2015) Theoretical Investigation of Adsorption and Dissociation of H
2on Cluster Al
6Si. International Journal of Hydrogen Energy, 40, 8911-8916. >https://doi.org/10.1016/j.ijhydene.2015.05.051
Li, K., Yang, C., Wang, M. and Ma, X. (2016) Adsorption and Dissociation of H
2on Cluster Al
6N. Journal of Cluster Science, 28, 1335-1344. >https://doi.org/10.1007/s10876-016-1151-3
Li, K., Yang, C., Han, Y., Wang, M., Ma, X. and Wang, L. (2016) Generating H
2from a H
2O Molecule by Catalysis Using a Small Al
6Cu Cluster. Energy, 106, 131-136. >https://doi.org/10.1016/j.energy.2016.03.027
de Heer, W.A., Milani, P. and Chtelain, A. (1989) Nonjellium-to-Jellium Transition in Aluminum Cluster Polarizabilities. Physical Review Letters, 63, 2834-2836. >https://doi.org/10.1103/physrevlett.63.2834
Cheng, H., Berry, R.S. and Whetten, R.L. (1991) Electronic Structure and Binding Energies of Aluminum Clusters. Physical Review B, 43, 10647-10653. >https://doi.org/10.1103/physrevb.43.10647
Li, X., Wu, H., Wang, X. and Wang, L. (1998) s-Phybridization and Electron Shell Structures in Aluminum Clusters: A Photoelectron Spectroscopy Study. Physical Review Letters, 81, 1909-1912. >https://doi.org/10.1103/physrevlett.81.1909
Ma, L., Issendorff, B. and Aguado, A. (2010) Photoelectron Spectroscopy of Cold Aluminum Cluster Anions: Comparison with Density Functional Theory Results. The Journal of Chemical Physics, 132, Article ID: 104303. >https://doi.org/10.1063/1.3352445
Kiran, B., Jena, P., Li, X., Grubisic, A., Stokes, S.T., Ganteför, G.F., et al. (2007) Magic Rule for Al
nH
mMagic Clusters. Physical Review Letters, 98, Article ID: 256802. >https://doi.org/10.1103/physrevlett.98.256802
Adamo, C. and Barone, V. (1999) Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. The Journal of Chemical Physics, 110, 6158-6170. >https://doi.org/10.1063/1.478522
Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al. (2013) Gaussian09, Revision D.01. Gaussian, Inc., Wallingford.