Figure 2. Tafel slope as a function of overpotential at 10 mA·cm−2 over state of the art catalysts for OER--图2. OER催化剂过电位在10 mA·cm−2的塔菲尔斜率--3. Ni-MOF电解水发展现状
Figure 3. Electrochemical performance of Pd/Ni-1, Pd/Ni-2 and Pd/Ni-3. (a) CV curves, (b) LSV curves, (c) Tafel plots, (d) Nyquist plots (the inset is the fitting equivalent circuit), (e) comparison of Rct and reduction percentage based on Ni-MOF and (f) LSV curves of Pd/Ni-3 initially and after 3000 CV scanning cycles--图3. Pd/Ni-1、Pd/Ni-2和Pd/Ni-3的电化学性能。(a) CV曲线,(b) LSV曲线,(c) Tafel图,(d) Nyquist图(插图为拟合等效电路),(e) 基于Ni-MOF的Rct和还原百分比的比较,(f) Pd/Ni-3初始和经过3000-CV扫描循环后的LSV曲线--
Figure 8. (a) Schematic diagram of the synthesis of Ni-MIL-53-Fc; (b) XPS survey; (c) XPS spectra of Ni2p in Ni-MIL-53-NH2 and Ni-MIL-53-Fc.--图8. (a) Ni-MIL-53-Fc合成示意图;(b) XPS谱图;(c) Ni-MIL-53-NH2和Ni-MIL-53-Fc中Ni2p的XPS光谱。--
Figure 9. (a) Illustration of Dy@Ni-MOF reconstruction during OER reaction; (b) Comparison of the overpotential at 10 mA·cm−2 and Tafel slope with previously reported OER catalysts; (c) Schematic of the OER catalytic mechanism for Dy2O3/NiOOH; (d) PDOS of Ni 3d and O 2p for Dy2O3/NiOOH and NiOOH; (e) DOS of Ni 3d and O 2p for Dy2O3/NiOOH and NiOOH; (f) OER Gibbs free energy diagrams for Dy2O3/NiOOH and NiOOH--图9. (b)与先前报道的OER催化剂的Tafel斜率的比较;(c) Dy2O3/NiOOH的OER催化机理示意图;(d) Dy2O3/NiOOH和NiOOH中Ni3d和O2p的PDOS图;(e) Dy2O3/NiOOH和NiOOH中Ni3d和O2p的DOS图;(f) Dy2O3/NiOOH和NiOOH的OER Gibbs能谱图--
Figure 12. (a) Schematic illustration for the formation of Ru@CoNi-MOF; (b) The model of Ru@CoNi-MOF; (c) Calculated DOS of Ni in Ni-MOF, CoNi-MOF and Ru@CoNi-MOF--图12. (a) Ru@CoNi MOF的形成示意图;(b) Ru@CoNi-MOF的模型;(c) Ni-MOF、Ni-MOF和Ru@CoNi-MOF中Ni的DOS计算--
Figure 13. Possible electrocatalytic mechanism of NiV4 and PtNiV4 electrocatalysts for overall water splitting in alkaline conditions--图13. NiV4 and PtNiV4电催化剂在碱性条件下全面解水的可能电催化机理--
References
Yan, J. (2018) Negative-Emissions Hydrogen Energy. Nature Climate Change, 8, 560-561. >https://doi.org/10.1038/s41558-018-0215-9
Martin, A., Agnoletti, M. and Brangier, E. (2020) Users in the Design of Hydrogen Energy Systems: A Systematic Review. International Journal of Hydrogen Energy, 45, 11889-11900. >https://doi.org/10.1016/j.ijhydene.2020.02.163
Li, Y., Hu, W., Zhang, F. and Li, Y. (2024) Collaborative Operational Model for Shared Hydrogen Energy Storage and Park Cluster: A Multiple Values Assessment. Journal of Energy Storage, 82, Article ID: 110507. >https://doi.org/10.1016/j.est.2024.110507
Nithya, V.D. (2021) Recent Advances in CoSe
2Electrocatalysts for Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 46, 36080-36102. >https://doi.org/10.1016/j.ijhydene.2021.08.157
Yu, Y., Liu, R., Sun, Y., Liu, Z., Shi, X., Lai, J., et al. (2024) Sub-Nanometric Materials for Hydrogen Evolution Reaction. Materials Chemistry Frontiers, 8, 159-178. >https://doi.org/10.1039/d3qm00586k
Li, S., Gao, Y., Li, N., Ge, L., Bu, X. and Feng, P. (2021) Transition Metal-Based Bimetallic MOFs and MOF-Derived Catalysts for Electrochemical Oxygen Evolution Reaction. Energy&Environmental Science, 14, 1897-1927. >https://doi.org/10.1039/d0ee03697h
Jamesh, M. and Harb, M. (2021) Tuning the Electronic Structure of the Earth-Abundant Electrocatalysts for Oxygen Evolution Reaction (OER) to Achieve Efficient Alkaline Water Splitting—A Review. Journal of Energy Chemistry, 56, 299-342. >https://doi.org/10.1016/j.jechem.2020.08.001
Wang, J., Yu, J., Wang, J., Wang, K., Yu, L., Zhu, C., et al. (2023) Adsorbed p‐Aminothiophenol Molecules on Platinum Nanoparticles Improve Electrocatalytic Hydrogen Evolution. Small, 19, Article ID: 2207135. >https://doi.org/10.1002/smll.202207135
Shah, A.H., Wan, C., Huang, Y. and Duan, X. (2023) Toward Molecular Level Understandings of Hydrogen Evolution Reaction on Platinum Surface. The Journal of Physical Chemistry C, 127, 12841-12848. >https://doi.org/10.1021/acs.jpcc.3c03217
Zhao, F., Wen, B., Niu, W., Chen, Z., Yan, C., Selloni, A., et al. (2021) Increasing Iridium Oxide Activity for the Oxygen Evolution Reaction with Hafnium Modification. Journal of the American Chemical Society, 143, 15616-15623. >https://doi.org/10.1021/jacs.1c03473
Sun, H. and Jung, W. (2021) Recent Advances in Doped Ruthenium Oxides as High-Efficiency Electrocatalysts for the Oxygen Evolution Reaction. Journal of Materials Chemistry A, 9, 15506-15521. >https://doi.org/10.1039/d1ta03452a
Wang, H., Yi, Q., Gao, L., Gao, Y., Liu, T., Jiang, Y., et al. (2017) Hierarchically Interconnected Nitrogen-Doped Carbon Nanosheets for an Efficient Hydrogen Evolution Reaction. Nanoscale, 9, 16342-16348. >https://doi.org/10.1039/c7nr06374a
Zhao, R., Li, Q., Jiang, X., Huang, S., Fu, G. and Lee, J. (2021) Interface Engineering in Transition Metal-Based Heterostructures for Oxygen Electrocatalysis. Materials Chemistry Frontiers, 5, 1033-1059. >https://doi.org/10.1039/d0qm00729c
Bonnefont, A., Ryabova, A.S., Schott, T., Kéranguéven, G., Istomin, S.Y., Antipov, E.V., et al. (2019) Challenges in the Understanding Oxygen Reduction Electrocatalysis on Transition Metal Oxides. Current Opinion in Electrochemistry, 14, 23-31. >https://doi.org/10.1016/j.coelec.2018.09.010
Wen, Y., Meng, W., Li, C., Dai, L., He, Z., Wang, L., et al. (2018) Enhanced Glucose Sensing Based on a Novel Composite Co
ii-MOF/Acb Modified Electrode. Dalton Transactions, 47, 3872-3879. >https://doi.org/10.1039/c8dt00296g
Akhtar, A., Zink, D. and Becker, P.B. (2000) Chromodomains Are Protein-RNA Interaction Modules. Nature, 407, 405-409. >https://doi.org/10.1038/35030169
Tan, H., Zhou, Y., Qiao, S. and Fan, H.J. (2021) Metal Organic Framework (MOF) in Aqueous Energy Devices. Materials Today, 48, 270-284. >https://doi.org/10.1016/j.mattod.2021.03.011
Liu, Y., Wang, Y., Zhao, S. and Tang, Z. (2022) Metal-Organic Framework‐Based Nanomaterials for Electrocatalytic Oxygen Evolution. Small Methods, 6, Article ID: 2200773. >https://doi.org/10.1002/smtd.202200773
Yang, Y., Yang, Y., Liu, Y., Zhao, S. and Tang, Z. (2021) Metal-Organic Frameworks for Electrocatalysis: Beyond Their Derivatives. Small Science, 1, Article ID: 2100015. >https://doi.org/10.1002/smsc.202100015
Dong, J., Liu, Y., Pei, J., Li, H., Ji, S., Shi, L., et al. (2023) Continuous Electroproduction of Formate via CO
2Reduction on Local Symmetry-Broken Single-Atom Catalysts. Nature Communications, 14, Article No. 6849. >https://doi.org/10.1038/s41467-023-42539-1
Sun, Y., Xue, Z., Liu, Q., Jia, Y., Li, Y., Liu, K., et al. (2021) Modulating Electronic Structure of Metal-Organic Frameworks by Introducing Atomically Dispersed Ru for Efficient Hydrogen Evolution. Nature Communications, 12, Article No. 1369. >https://doi.org/10.1038/s41467-021-21595-5
Zhou, Z., Kong, Y., Tan, H., Huang, Q., Wang, C., Pei, Z., et al. (2022) Cation‐Vacancy‐Enriched Nickel Phosphide for Efficient Electrosynthesis of Hydrogen Peroxides. Advanced Materials, 34, Article ID: 2106541. >https://doi.org/10.1002/adma.202106541
Yang, D., Su, Z., Chen, Y., Srinivas, K., Zhang, X., Zhang, W., et al. (2022) Self-reconstruction of a MOF-Derived Chromium-Doped Nickel Disulfide in Electrocatalytic Water Oxidation. Chemical Engineering Journal, 430, Article ID: 133046. >https://doi.org/10.1016/j.cej.2021.133046
Srinivas, K., Ma, F., Liu, Y., Zhang, Z., Wu, Y. and Chen, Y. (2022) Metal-Organic Framework-Derived Fe-Doped Ni
3Se
4/NiSe
2Heterostructure-Embedded Mesoporous Tubes for Boosting Oxygen Evolution Reaction. ACS Applied Materials&Interfaces, 14, 52927-52939. >https://doi.org/10.1021/acsami.2c16133
Xu, X., Zhou, Q. and Yu, D. (2022) The Future of Hydrogen Energy: Bio-Hydrogen Production Technology. International Journal of Hydrogen Energy, 47, 33677-33698. >https://doi.org/10.1016/j.ijhydene.2022.07.261
Guo, J., Liang, Y., Liu, L., Hu, J., Wang, H., An, W., et al. (2020) Noble-Metal-Free CdS/Ni-MOF Composites with Highly Efficient Charge Separation for Photocatalytic H
2Evolution. Applied Surface Science, 522, Article ID: 146356. >https://doi.org/10.1016/j.apsusc.2020.146356
You, B. and Sun, Y. (2018) Innovative Strategies for Electrocatalytic Water Splitting. Accounts of Chemical Research, 51, 1571-1580. >https://doi.org/10.1021/acs.accounts.8b00002
Wei, Y., Su, J., Guo, L. and Vayssieres, L. (2019) Something New under the Sun for Ultra Low-Cost Single-Junction Photoanodes for Highly Efficient Photocatalytic Water Splitting. Solar Energy Materials and Solar Cells, 201, Article ID: 110083. >https://doi.org/10.1016/j.solmat.2019.110083
Zhou, S., Shi, L., Li, Y., Yang, T. and Zhao, S. (2024) Metal‐Organic Framework‐based Electrocatalysts for Acidic Water Splitting. Advanced Functional Materials. >https://doi.org/10.1002/adfm.202400767
Zhu, J., Hu, L., Zhao, P., Lee, L.Y.S. and Wong, K. (2019) Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews, 120, 851-918. >https://doi.org/10.1021/acs.chemrev.9b00248
van der Heijden, O., Park, S., Vos, R.E., Eggebeen, J.J.J. and Koper, M.T.M. (2024) Tafel Slope Plot as a Tool to Analyze Electrocatalytic Reactions. ACS Energy Letters, 9, 1871-1879. >https://doi.org/10.1021/acsenergylett.4c00266
Cheng, W., Guan, W., Lin, Y. and Lu, C. (2022) Rapid Discrimination of Adsorbed Oxygen and Lattice Oxygen in Catalysts by the Cataluminescence Method. Analytical Chemistry, 94, 1382-1389. >https://doi.org/10.1021/acs.analchem.1c04663
Suen, N., Hung, S., Quan, Q., Zhang, N., Xu, Y. and Chen, H.M. (2017) Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chemical Society Reviews, 46, 337-365. >https://doi.org/10.1039/c6cs00328a
Zeng, F., Mebrahtu, C., Liao, L., Beine, A.K. and Palkovits, R. (2022) Stability and Deactivation of OER Electrocatalysts: A Review. Journal of Energy Chemistry, 69, 301-329. >https://doi.org/10.1016/j.jechem.2022.01.025
Nie, M., Xue, Z.H., Sun, H., Liao, J.M., Xue, F.J. and Wang, X.X. (2020) Pd Doped Ni Derived from Ni-Metal Organic Framework for Efficient Hydrogen Evolution Reaction in Alkaline Electrolyte. International Journal of Hydrogen Energy, 45, 28870-28875. >https://doi.org/10.1016/j.ijhydene.2020.07.260
Wang, T., Jin, R., Wu, X., Zheng, J., Li, X. and Ostrikov, K. (2018) A Highly Efficient Ni-Mo Bimetallic Hydrogen Evolution Catalyst Derived from a Molybdate Incorporated Ni-MOF. Journal of Materials Chemistry A, 6, 9228-9235. >https://doi.org/10.1039/c8ta01325j
Zhang, X., Lin, R., Meng, X., Li, W., Chen, F. and Hou, J. (2021) Iron Phthalocyanine/Two-Dimensional Metal-Organic Framework Composite Nanosheets for Enhanced Alkaline Hydrogen Evolution. Inorganic Chemistry, 60, 9987-9995. >https://doi.org/10.1021/acs.inorgchem.1c01259
Zhu, F., Zhang, X., Han, X., Zhou, C., Lu, S., Lang, J., et al. (2022) Nanostructured Catalyst Assembled from CNTs, NiSe
2Nanoparticles, and 2D Ni-MOF Nanosheets for Electrocatalytic Hydrogen Evolution Reaction. CrystEngComm, 24, 8503-8508. >https://doi.org/10.1039/d2ce01205g
Qu, H., Ma, Y., Gou, Z., Li, B., Liu, Y., Zhang, Z., et al. (2020) Ni
2P/C Nanosheets Derived from Oriented Growth Ni-MOF on Nickel Foam for Enhanced Electrocatalytic Hydrogen Evolution. Journal of Colloid and Interface Science, 572, 83-90. >https://doi.org/10.1016/j.jcis.2020.03.068
Gothandapani, K., Jeniffer, R.S., Tamil Selvi, G., Velmurugan, V., Assaifan, A.K., Alzahrani, K.E., et al. (2024) Nickel Nanoparticles Supported on Carbon Surface as an Electrocatalyst for Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 52, 1137-1146. >https://doi.org/10.1016/j.ijhydene.2023.08.027
Huang, Z., Yuan, S., Zhang, T., Cai, B., Xu, B., Lu, X., et al. (2020) Selective Selenization of Mixed-Linker Ni-MOFs: NiSe
2@NC Core-Shell Nano-Octahedrons with Tunable Interfacial Electronic Structure for Hydrogen Evolution Reaction. Applied Catalysis B: Environmental, 272, Article ID: 118976. >https://doi.org/10.1016/j.apcatb.2020.118976
Xu, Z., Tao, Y., Sun, Z., Bi, P., Zhong, X., Liao, J., et al. (2023) Ligand-Engineered Ni-Based Metal-Organic Frameworks for Electrochemical Oxygen Evolution Reaction. Chemical Engineering Journal, 478, Article ID: 147418. >https://doi.org/10.1016/j.cej.2023.147418
Huang, Z., Liao, M., Zhang, S., Wang, L., Gao, M., Luo, Z., et al. (2024) Valence Electronic Engineering of Superhydrophilic Dy-Evoked Ni-MOF Outperforming RuO
2for Highly Efficient Electrocatalytic Oxygen Evolution. Journal of Energy Chemistry, 90, 244-252. >https://doi.org/10.1016/j.jechem.2023.11.012
Wang, X., Xiao, H., Li, A., Li, Z., Liu, S., Zhang, Q., et al. (2018) Constructing NiCo/Fe
3O
4Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions. Journal of the American Chemical Society, 140, 15336-15341. >https://doi.org/10.1021/jacs.8b08744
Cao, C., Ma, D., Xu, Q., Wu, X. and Zhu, Q. (2018) Semisacrificial Template Growth of Self‐supporting MOF Nanocomposite Electrode for Efficient Electrocatalytic Water Oxidation. Advanced Functional Materials, 29, Article ID: 1807418. >https://doi.org/10.1002/adfm.201807418
Cao, L., Chen, B., Yan, J., Jiang, S., Su, Z., Chen, K., et al. (2023) Nickel Nanoparticle-Embedded N-Doped Carbon Catalysts Formed by MOF Derivatives for the Oxygen Evolution Reaction. New Journal of Chemistry, 47, 12799-12805. >https://doi.org/10.1039/d3nj01102j
Ramesh, S.K., Son, J., Ganesan, V. and Kim, J. (2022) Carbon-Incorporated Ni
2P-Fe
2P Hollow Nanorods as Superior Electrocatalysts for the Oxygen Evolution Reaction. Nanoscale, 14, 16262-16269. >https://doi.org/10.1039/d2nr02663e
Li, W., Guo, B., Zhang, K., Chen, X., Zhang, H., Chen, W., et al. (2024) Ru-Regulated Electronic Structure CoNi-MOF Nanosheets Advance Water Electrolysis Kinetics in Alkaline and Seawater Media. Journal of Colloid and Interface Science, 668, 181-189. >https://doi.org/10.1016/j.jcis.2024.04.144
Kashif, M., Thangarasu, S., Murugan, N., Magdum, S.S., Kim, Y.A., Kurkuri, M., et al. (2024) Interatomic Interaction of 2D Crumpled V
2O
5Nanosheets Layered with Ni-MOF as a Bifunctional Electrocatalyst for Overall Water Splitting and Supercapacitor Applications. Journal of Energy Storage, 81, Article ID: 110348. >https://doi.org/10.1016/j.est.2023.110348
Senthil Raja, D., Lin, H. and Lu, S. (2019) Synergistically Well-Mixed MOFs Grown on Nickel Foam as Highly Efficient Durable Bifunctional Electrocatalysts for Overall Water Splitting at High Current Densities. Nano Energy, 57, 1-13. >https://doi.org/10.1016/j.nanoen.2018.12.018
Patel, K.B., Parmar, B., Ravi, K., Patidar, R., Chaudhari, J.C., Srivastava, D.N., et al. (2023) Metal-Organic Framework Derived Core-Shell Nanoparticles as High Performance Bifunctional Electrocatalysts for HER and OER. Applied Surface Science, 616, Article ID: 156499. >https://doi.org/10.1016/j.apsusc.2023.156499