References
(美)托马斯∙M.利拉桑德, (美)拉夫∙W.基弗, (美)乔纳森∙W.奇普曼. 遥感与图像解译[M]. 彭望琭, 余先川, 贺辉, 陈红顺, 译. 北京: 电子工业出版社, 2016.
Chen, Y., Lin, Z., Zhao, X., Wang, G. and Gu, Y. (2014) Deep Learning-Based Classification of Hyperspectral Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2094-2107. >https://doi.org/10.1109/jstars.2014.2329330
Tao, C., Pan, H.B., Li, YS. and Zou, Z.R. (2015) Unsupervised Spectral-Spatial Feature Learning with Stacked Sparse Autoencoder for Hyperspectral Imagery Classification. IEEE Geoscience and Remote Sensing Letters, 12, 2438-2442. >https://doi.org/10.1109/lgrs.2015.2482520
Mughees, A. and Tao, L. (2016). Efficient Deep Auto-Encoder Learning for the Classification of Hyperspectral Images. 2016 International Conference on Virtual Reality and Visualization, Hangzhou, 24-26 September 2016, 44-51. >https://doi.org/10.1109/icvrv.2016.16
Zhang, X., Liang, Y., Li, C., Huyan, N., Jiao, L. and Zhou, H. (2017) Recursive Autoencoders-Based Unsupervised Feature Learning for Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Letters, 14, 1928-1932. >https://doi.org/10.1109/lgrs.2017.2737823
Feng, J., Liu, L., Cao, X., Jiao, L., Sun, T. and Zhang, X. (2018) Marginal Stacked Autoencoder with Adaptively-Spatial Regularization for Hyperspectral Image Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 3297-3311. >https://doi.org/10.1109/jstars.2018.2854893
Zhou, S., Xue, Z. and Du, P. (2019) Semisupervised Stacked Autoencoder with Cotraining for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 57, 3813-3826. >https://doi.org/10.1109/tgrs.2018.2888485
石延新, 何进荣, 李照奎, 曾志高. 3D卷积自编码器高光谱图像分类模型[J]. 中国图象图形学报, 2021, 26(8): 2021-2036.
Ghasrodashti, E.K. and Sharma, N. (2021) Hyperspectral Image Classification Using an Extended Auto-Encoder Method. Signal Processing: Image Communication, 92, Article 116111. >https://doi.org/10.1016/j.image.2020.116111
Bai, Y., Sun, X., Ji, Y., Fu, W. and Zhang, J. (2023) Two-stage Multi-Dimensional Convolutional Stacked Autoencoder Network Model for Hyperspectral Images Classification. Multimedia Tools and Applications, 83, 23489-23508. >https://doi.org/10.1007/s11042-023-16456-w
Chen, Y., Zhao, X. and Jia, X. (2015) Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 2381-2392. >https://doi.org/10.1109/jstars.2015.2388577
Zhong, P., Gong, Z.Q. and Schönlieb, C. (2016) A Diversified Deep Belief Network for Hyperspectral Image Classification. ISPRS-International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, 7, 443-449. >https://doi.org/10.5194/isprsarchives-xli-b7-443-2016
Zhong, P., Gong, Z., Li, S. and Schonlieb, C. (2017) Learning to Diversify Deep Belief Networks for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 55, 3516-3530. >https://doi.org/10.1109/tgrs.2017.2675902
Zhong, P. and Gong, Z. (2017) A Hybrid DBN and CRF Model for Spectral-Spatial Classification of Hyperspectral Images. Statistics, Optimization&Information Computing, 5, 75-98. >https://doi.org/10.19139/soic.v5i2.309
Ghassemi, M., Ghassemian, H. and Imani, M. (2018). Deep Belief Networks for Feature Fusion in Hyperspectral Image Classification. 2018 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, Bali, 20-21 September 2018, 1-6. >https://doi.org/10.1109/icares.2018.8547136
Mughees, A. and Tao, L. (2019) Multiple Deep-Belief-Network-Based Spectral-Spatial Classification of Hyperspectral Images. Tsinghua Science and Technology, 24, 183-194. >https://doi.org/10.26599/tst.2018.9010043
Chen, C., Ma, Y. and Ren, G. (2020) Hyperspectral Classification Using Deep Belief Networks Based on Conjugate Gradient Update and Pixel-Centric Spectral Block Features. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4060-4069. >https://doi.org/10.1109/jstars.2020.3008825
Li, Z., Huang, H., Zhang, Z. and Shi, G. (2022) Manifold-Based Multi-Deep Belief Network for Feature Extraction of Hyperspectral Image. Remote Sensing, 14, Article 1484. >https://doi.org/10.3390/rs14061484
Subba Reddy, T., Krishna Reddy, V.V., Vijaya Kumar Reddy, R., Kolli, C.S., Sitharamulu, V. and Chandrababu, M. (2023) SHBO-Based-U-Net for Image Segmentation and FSHBO-Enabled DBN for Classification Using Hyperspectral Image. The Imaging Science Journal, 72, 479-498. >https://doi.org/10.1080/13682199.2023.2208927
Hu, W., Huang, Y., Wei, L., Zhang, F. and Li, H. (2015) Deep Convolutional Neural Networks for Hyperspectral Image Classification. Journal of Sensors, 2015, 1-12. >https://doi.org/10.1155/2015/258619
Yue, J., Zhao, W., Mao, S. and Liu, H. (2015) Spectral-Spatial Classification of Hyperspectral Images Using Deep Convolutional Neural Networks. Remote Sensing Letters, 6, 468-477. >https://doi.org/10.1080/2150704x.2015.1047045
Chen, Y., Jiang, H., Li, C., Jia, X. and Ghamisi, P. (2016) Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 54, 6232-6251. >https://doi.org/10.1109/tgrs.2016.2584107
李冠东, 张春菊, 高飞, 张雪英. 双卷积池化结构的3D-CNN高光谱遥感影像分类方法[J]. 中国图象图形学报, 2019, 24(4): 639-654.
Xu, Q., Xiao, Y., Wang, D., et al. (2020) CSA-MSO3DCNN: Multiscale Octave 3D CNN with Channel and Spatial Attention for Hyperspectral Image Classification. Remote Sensing, 12, Article 188. >https://doi.org/10.3390/rs12010188
陈亨, 邓非. 分解式三维卷积神经网络的高光谱遥感影像分类[J]. 2020, 45(8): 96-102+129.
魏祥坡, 余旭初, 谭熊, 刘冰, 职露. CNN和三维Gabor滤波器的高光谱图像分类[J]. 计算机辅助设计与图形学学报, 2020, 32(1): 90-98.
刘金香, 班伟, 陈宇, 孙亚琴, 庄会富, 富尔江, 张克非. 融合多维度CNN的高光谱遥感图像分类算法[J]. 中国激光, 2021, 48(16): 159-169.
刘翠连, 陶于祥, 罗小波, 李青妍. 混合卷积神经网络的高光谱图像分类方法[J]. 激光技术, 2022, 46(3): 355-361.
陈辉, 张甜, 陈润斌. 基于轻量级卷积Transformer的图像分类方法及在遥感图像分类中的应用[J/OL]. 电子与信息学报: 1-9. 2022-07-07. >https://link.cnki.net/urlid/11.4494.TN.20220705.1638.014, 2023-08-07.
高峰, 孟德森, 解正源, 亓林, 董军宇. 基于Transformer和动态3D卷积的多源遥感图像分类[J]. 北京航空航天大学学报, 2024, 50(2): 606-614.
金传, 童常青. 融合CNN与Transformer结构的遥感图像分类方法[J]. 激光与光电子学进展, 2023, 60(20): 225-234.
刘国庆, 任彦, 高晓文, 龙杰, 苏楠. 基于多尺度混合卷积的高光谱遥感图像分类方法研究[J/OL]. 激光杂志: 1-9. >https://link.cnki.net/urlid/50.1085.TN.20240612.0939.004, 2024-07-06.
Zhu, L., Chen, Y., Ghamisi, P. and Benediktsson, J.A. (2018) Generative Adversarial Networks for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 56, 5046-5063. >https://doi.org/10.1109/tgrs.2018.2805286
Zhong, Z., Li, J., Clausi, D.A. and Wong, A. (2020) Generative Adversarial Networks and Conditional Random Fields for Hyperspectral Image Classification. IEEE Transactions on Cybernetics, 50, 3318-3329. >https://doi.org/10.1109/tcyb.2019.2915094
Wang, X., Tan, K., Du, Q., Chen, Y. and Du, P. (2019) Caps-Triplegan: Gan-Assisted Capsnet for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 57, 7232-7245. >https://doi.org/10.1109/tgrs.2019.2912468
Feng, J., Feng, X., Chen, J., Cao, X., Zhang, X., Jiao, L., et al. (2020) Generative Adversarial Networks Based on Collaborative Learning and Attention Mechanism for Hyperspectral Image Classification. Remote Sensing, 12, Article 1149. >https://doi.org/10.3390/rs12071149
Xue, Z. (2019) A General Generative Adversarial Capsule Network for Hyperspectral Image Spectral-Spatial Classification. Remote Sensing Letters, 11, 19-28. >https://doi.org/10.1080/2150704x.2019.1681598
Wang, J., Guo, S., Huang, R., Li, L., Zhang, X. and Jiao, L. (2022) Dual-Channel Capsule Generation Adversarial Network for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-16. >https://doi.org/10.1109/tgrs.2020.3044312
Yu, W., Zhang, M., He, Z. and Shen, Y. (2022) Convolutional Two-Stream Generative Adversarial Network-Based Hyperspectral Feature Extraction. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-10. >https://doi.org/10.1109/tgrs.2021.3073924
钱园园, 刘进锋, 朱东辉. 一种生成对抗网络半监督遥感图像分类方法[J]. 遥感信息, 2022, 37(4): 36-42.
Zhan, Y., Wang, Y. and Yu, X. (2023) Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks and Spectral Angle Distance. Scientific Reports, 13, Article No. 22019. >https://doi.org/10.1038/s41598-023-49239-2