aam
Advances in Applied Mathematics
2324-7991
2324-8009
beplay体育官网网页版等您来挑战!
10.12677/aam.2024.138376
aam-94667
Articles
数学与物理
一类四阶变系数常微分系统固结梁边值问题的正解
Positive Solution of a Class of Clamped Beam BVPs for Fourth Order Ordinary Differential Systems with Variable Coefficients
王
瑞
商洛学院数学与计算机应用学院,陕西 商洛
30
07
2024
13
08
3945
3952
21
7
:2024
13
7
:2024
13
8
:2024
Copyright © 2024 beplay安卓登录 All rights reserved.
2024
This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/
运用Leray-Schauder度理论和不动点定理获得了两端固定支撑边界条件下四阶变系数常微分系统固结梁边值问题
{
u
(
4
)
(
x
)
+
a
(
x
)
u
(
x
)
=
f
1
(
x
,
v
(
x
)
)
,
x
∈
(
0
,
1
)
,
v
(
4
)
(
x
)
+
b
(
x
)
v
(
x
)
=
f
2
(
x
,
u
(
x
)
)
,
x
∈
(
0
,
1
)
,
u
(
0
)
=
u
(
1
)
=
u
′
(
0
)
=
u
′
(
1
)
=
0
,
v
(
0
)
=
v
(
1
)
=
v
′
(
0
)
=
v
′
(
1
)
=
0
正解的存在性和唯一性,其中
a
,
b
:
[
0
,
1
]
→
[
0
,
+
∞
)
连续,非线性项
f
i
:
[
0
,
1
]
×
R
→
R
为连续函数且
f
i
(
x
,
0
)
≥
0
(
i
=
1
,
2
)
。
The existence and uniqueness of positive solution for the boundary value problem of fourth order variable coefficients ordinary differential system
{
u
(
4
)
(
x
)
+
a
(
x
)
u
(
x
)
=
f
1
(
x
,
v
(
x
)
)
,
x
∈
(
0
,
1
)
,
v
(
4
)
(
x
)
+
b
(
x
)
v
(
x
)
=
f
2
(
x
,
u
(
x
)
)
,
x
∈
(
0
,
1
)
,
u
(
0
)
=
u
(
1
)
=
u
′
(
0
)
=
u
′
(
1
)
=
0
,
v
(
0
)
=
v
(
1
)
=
v
′
(
0
)
=
v
′
(
1
)
=
0
with clamped beam conditions were obtained using Leray-Schauder degree theory and fixed point theorem, where
a
,
b
:
[
0
,
1
]
→
[
0
,
+
∞
)
are continuous, nonlinear term
f
i
:
[
0
,
1
]
×
R
→
R
are continuous and
f
i
(
x
,
0
)
≥
0
(
i
=
1
,
2
)
.
变系数,四阶常微分系统,Leray-Schauder度理论,正解
Variable Coefficients
Fourth Order Ordinary Differential Systems
Leray-Schauder Degree Theory
Positive Solution
1. 引言
四阶常微分方程边值问题是描述在弹性变形下梁状态的数学模型,也称弹性梁问题,理想的弹性变形条件对梁结构前期分析及后期延性调整起着至关重要作用。由于其重要的物理意义和实际应用价值,许多学者对不同边界条件下四阶常微分方程解或正解的存在性情况进行了研究并取得了一系列丰硕成果,参见文献
[1]
-
[8]
及其参考文献等。
2010年,Ma
[5]
借助Krein-Rutman定理和全局分歧技巧研究了两端简单支撑边界条件下四阶微分方程
u
(
4
)
(
x
)
=
f
(
x
,
u
,
u
″
)
,
x
∈
(
0
,
1
)
正解的存在性,其中
f
:
[
0
,
1
]
×
[
0
,
∞
)
×
(
−
∞
,
0
]
→
[
0
,
∞
)
连续;2022年,Wang
[6]
等人应用单调迭代技巧获得了两端滑动支撑边界条件下的常系数非线性四阶常微分方程
y
(
4
)
(
x
)
+
(
k
1
+
k
2
)
y
″
(
x
)
+
k
1
k
2
y
(
x
)
=
λ
h
(
x
)
f
(
y
(
x
)
)
,
x
∈
(
0
,
1
)
正解的存在性,其中
f
∈
C
(
[
0
,
∞
)
,
R
)
。2006年,Ma
[7]
运用分歧技巧关注了两端简单支撑边界条件下变系数四阶常微分方程
y
(
4
)
(
x
)
+
β
(
x
)
y
″
(
x
)
=
a
(
x
)
f
(
y
(
x
)
)
,
x
∈
(
0
,
1
)
结点解的多重性,其中
β
∈
C
[
0
,
1
]
,
β
(
x
)
<
π
2
,
f
:
R
→
R
连续且满足
f
(
u
)
u
>
0
;2013年,Ma
[8]
通过非共轭理论和Elias’s谱理论给出了两端固定支撑边界条件下算子
u
(
4
)
+
p
(
x
)
u
,
x
∈
(
0
,
1
)
的谱结构和正性。一个重要的讯息是,文献
[7]
[8]
对四阶常微分方程的研究都是在变系数条件下进行的。
2008年,An
[9]
通过变分法探究了一类二阶–四阶耦合常微分系统边值问题解的存在性、不存在性和多重性情况;2020年,Wang
[10]
利用锥上的不动点定理获得了四阶常微分方程非线性系统
{
u
(
4
)
(
x
)
+
β
1
u
″
(
x
)
−
α
1
u
(
x
)
=
f
1
(
x
,
u
(
x
)
,
v
(
x
)
)
,
x
∈
(
0
,
1
)
,
v
(
4
)
(
x
)
+
β
2
v
″
(
x
)
−
α
2
v
(
x
)
=
f
2
(
x
,
u
(
x
)
,
v
(
x
)
)
,
x
∈
(
0
,
1
)
,
u
(
0
)
=
u
(
1
)
=
u
″
(
0
)
=
u
″
(
1
)
=
0
,
v
(
0
)
=
v
(
1
)
=
v
″
(
0
)
=
v
″
(
1
)
=
0
正解的存在性,其中
f
i
∈
C
(
[
0
,
1
]
×
[
0
,
+
∞
)
×
[
0
,
+
∞
)
,
[
0
,
+
∞
)
)
,
α
i
,
β
i
∈
R
(
i
=
1
,
2
)
且
β
i
<
2
π
2
,
−
β
i
2
4
≤
α
i
,
α
i
π
4
+
β
i
π
2
<
1
。
值得注意的是,上述文献对边值问题的研究包括解(或正解)的存在性、不存在性及多重性,但鲜少表明解的存在唯一性。与此同时,通过查阅资料,近年来对四阶常微分方程系统问题的研究还相对较少,而且文献
[10]
获得的是常系数四阶系统问题当非线性项为正时正解的存在性结果。一个自然的问题是,非线性项变号时,四阶常微分方程系统问题正解的存在情况如何呢?还有,如果是变系数系统,能否给出正解的存在唯一性结果呢?受文献
[8]
[10]
启发,本文研究两端固定支撑边界条件下四阶变系数常微分系统边值问题
{
u
(
4
)
(
x
)
+
a
(
x
)
u
(
x
)
=
f
1
(
x
,
v
(
x
)
)
,
x
∈
(
0
,
1
)
,
v
(
4
)
(
x
)
+
b
(
x
)
v
(
x
)
=
f
2
(
x
,
u
(
x
)
)
,
x
∈
(
0
,
1
)
,
u
(
0
)
=
u
(
1
)
=
u
′
(
0
)
=
u
′
(
1
)
=
0
,
v
(
0
)
=
v
(
1
)
=
v
′
(
0
)
=
v
′
(
1
)
=
0
(1)
正解的存在性和唯一性。本文总假设:
(A1)
a
,
b
∈
C
[
0
,
1
]
,
∀
x
∈
[
0
,
1
]
,
0
≤
a
(
x
)
,
b
(
x
)
≤
128
且在
[
0
,
1
]
的任何子区间上不恒为0;
(A2)
f
i
:
[
0
,
1
]
×
R
→
R
连续,
f
i
(
x
,
0
)
≥
0
(
i
=
1
,
2
)
且
f
i
关于第二变元
y
∈
[
0
,
+
∞
)
是单调递增的。
本文将用到以下记号:
max
x
∈
[
0
,
1
]
f
i
(
x
,
y
)
=
F
i
(
y
)
,
min
x
∈
[
0
,
1
]
f
i
(
x
,
y
)
=
h
i
(
y
)
,
i
=
1
,
2
,
y
∈
R
.
2. 预备知识
为表达方便,不妨取
a
:
=
max
x
∈
[
0
,
1
]
a
(
x
)
≤
128
。记常系数齐次边值问题
{
u
(
4
)
(
x
)
+
a
u
(
x
)
=
0
,
x
∈
(
0
,
1
)
,
u
(
0
)
=
u
(
1
)
=
u
′
(
0
)
=
u
′
(
1
)
=
0
的格林函数为
G
1
(
x
,
s
)
,通过计算可得
G
1
(
x
,
s
)
=
{
g
1
(
s
,
x
)
,
0
≤
s
≤
x
≤
1
,
g
1
(
x
,
s
)
,
0
≤
x
≤
s
≤
1
,
(2)
其中,
g
1
(
x
,
s
)
=
e
−
a
4
(
3
s
+
x
−
6
)
2
(
4
a
)
3
4
(
−
4
e
4
a
4
+
e
2
6
a
4
+
2
e
4
a
4
cos
(
4
a
4
)
+
1
)
[
(
−
e
4
a
4
(
s
−
2
)
sin
2
−
2
a
4
(
s
−
2
)
+
e
2
6
a
4
(
s
−
1
)
sin
2
−
2
a
4
(
s
−
2
)
+
e
4
a
4
(
s
−
1
)
sin
2
−
2
a
4
s
−
e
4
a
4
(
2
s
−
3
)
sin
2
−
2
a
4
s
+
(
e
4
a
4
(
s
−
2
)
+
e
2
6
a
4
(
s
−
1
)
)
cos
2
−
2
a
4
(
s
−
2
)
+
(
−
2
e
4
a
4
(
s
−
2
)
+
e
4
a
4
(
s
−
1
)
−
2
e
2
6
a
4
(
s
−
1
)
+
e
4
a
4
(
2
s
−
3
)
)
cos
2
−
2
a
4
s
)
(
(
e
4
a
4
x
−
1
)
cos
2
−
2
a
4
x
−
(
e
4
a
4
x
+
1
)
sin
2
−
2
a
4
x
)
−
2
(
e
4
a
4
x
−
1
)
sin
2
−
2
a
4
x
(
(
e
4
a
4
(
s
−
2
)
−
e
4
a
4
(
s
−
1
)
+
e
2
6
a
4
(
s
−
1
)
−
e
4
a
4
(
2
s
−
3
)
)
sin
2
−
2
a
4
s
+
(
e
4
a
4
(
s
−
2
)
−
e
2
6
a
4
(
s
−
1
)
)
cos
2
−
2
a
4
(
s
−
2
)
+
(
e
2
6
a
4
(
s
−
1
)
−
e
4
a
4
(
s
−
2
)
)
cos
2
−
2
a
4
s
)
]
.
边值问题
{
u
(
4
)
(
x
)
+
a
(
x
)
u
(
x
)
=
0
,
x
∈
(
0
,
1
)
,
u
(
0
)
=
u
(
1
)
=
u
′
(
0
)
=
u
′
(
1
)
=
0
等价于线性边值问题
{
u
(
4
)
(
x
)
+
a
u
(
x
)
=
[
a
−
a
(
x
)
]
u
(
x
)
,
x
∈
(
0
,
1
)
,
u
(
0
)
=
u
(
1
)
=
u
′
(
0
)
=
u
′
(
1
)
=
0
,
(3)
而问题(3)的格林函数为
G
1
(
x
,
s
)
,
(
x
,
s
)
∈
[
0
,
1
]
×
[
0
,
1
]
,已由式(2)给出。通过类似计算亦可得
{
v
(
4
)
(
x
)
+
b
(
x
)
v
(
x
)
=
0
,
x
∈
(
0
,
1
)
,
v
(
0
)
=
v
(
1
)
=
v
′
(
0
)
=
v
′
(
1
)
=
0
的格林函数
G
2
(
x
,
s
)
。
引理1
[8]
若假设(A1)成立,则
G
i
(
x
,
s
)
>
0
,
(
x
,
s
)
∈
(
0
,
1
)
×
(
0
,
1
)
,
并且存在
m
i
=
min
x
,
s
∈
(
0
,
1
)
G
i
(
x
,
s
)
,
M
i
=
max
x
,
s
∈
(
0
,
1
)
G
i
(
x
,
s
)
,即
0
<
m
i
≤
G
i
(
x
,
s
)
≤
M
i
,
i
=
1
,
2
。
引理2若假设(A1)~(A2)成立,且
(A3)
∀
x
∈
[
0
,
1
]
,
f
2
(
x
,
y
)
关于第二变元
y
∈
(
−
∞
,
0
]
是单调递减的;
(A4)
∀
c
>
0
,
lim
y
→
+
∞
F
2
(
c
F
1
(
y
)
)
y
=
0
。
则存在常数
D
>
0
,使得
∀
δ
∈
[
0
,
1
]
,问题
{
u
(
4
)
(
x
)
+
a
(
x
)
u
(
x
)
=
δ
f
1
(
x
,
v
(
x
)
)
,
x
∈
(
0
,
1
)
,
v
(
4
)
(
x
)
+
b
(
x
)
v
(
x
)
=
δ
f
2
(
x
,
u
(
x
)
)
,
x
∈
(
0
,
1
)
,
u
(
0
)
=
u
(
1
)
=
u
′
(
0
)
=
u
′
(
1
)
=
0
,
v
(
0
)
=
v
(
(
1
)
=
v
′
(
0
)
=
v
′
(
1
)
=
0
(4)
的所有解有
max
{
‖
u
‖
∞
,
‖
v
‖
∞
}
≤
D
,
其中
‖
u
‖
∞
=
max
x
∈
[
0
,
1
]
|
u
(
x
)
|
。
证明:由引理1,问题(4)等价于如下积分方程组
{
u
(
x
)
=
δ
∫
0
1
G
1
(
x
,
s
)
f
1
(
s
,
v
(
s
)
)
d
s
,
0
<
x
<
1
,
v
(
x
)
=
δ
∫
0
1
G
2
(
x
,
s
)
f
2
(
s
,
u
(
s
)
)
d
s
,
0
<
x
<
1.
(5)
设
(
u
,
v
)
是问题(4)的解。由假设(A2)~(A3)和
G
i
(
x
,
s
)
>
0
,
i
=
1
,
2
,可得
u
,
v
≥
0
。根据假设(A4),存在
d
>
0
,使得
F
2
(
M
1
F
1
(
v
)
)
<
v
2
M
2
,
v
>
d
.
(6)
若
‖
u
‖
∞
≤
d
,
v
(
x
)
=
δ
∫
0
1
G
2
(
x
,
s
)
f
2
(
s
,
u
(
s
)
)
d
s
≤
F
2
(
d
)
∫
0
1
G
2
(
x
,
s
)
d
s
≤
M
2
F
2
(
d
)
,
即
‖
v
‖
∞
≤
M
2
F
2
(
d
)
。同理,若
‖
v
‖
∞
≤
d
,则
‖
u
‖
∞
≤
M
1
F
1
(
d
)
。
若
‖
u
‖
∞
>
d
,
‖
v
‖
∞
>
d
,则有
‖
u
‖
∞
≤
M
1
F
1
(
‖
v
‖
∞
)
(7)
和
‖
v
‖
∞
≤
M
2
F
2
(
‖
u
‖
∞
)
,
(8)
结合式(6)-(8)可得,
‖
v
‖
∞
≤
M
f
(
M
g
(
‖
v
‖
∞
)
)
<
‖
v
‖
∞
2
,
矛盾。
综上,令
D
=
max
{
d
,
M
1
F
1
(
d
)
,
M
2
F
2
(
d
)
}
,则问题(4)的所有解满足
max
{
‖
u
‖
∞
,
‖
v
‖
∞
}
≤
D
,得证。
3. 主要结果及其证明
定理1 假设(A1)~(A4)成立,且
(A5) 存在
x
1
,
x
2
∈
[
0
,
1
]
,使得
f
1
(
x
1
,
v
)
>
0
,
f
2
(
x
2
,
0
)
>
0
,
∀
v
>
0
。
则问题(1)至少存在一个正解
(
u
,
v
)
∈
(
C
4
[
0
,
1
]
)
2
。
证明:设
X
=
(
C
[
0
,
1
]
)
2
,其范数为
‖
(
u
,
v
)
‖
=
max
{
‖
u
‖
∞
,
‖
v
‖
∞
}
。则问题(5)的解等价于积分方程
(
u
(
x
)
,
v
(
x
)
)
=
δ
(
∫
0
1
G
1
(
x
,
s
)
f
1
(
s
,
v
(
s
)
)
d
s
,
∫
0
1
G
2
(
x
,
s
)
f
2
(
s
,
u
(
s
)
)
d
s
)
的解
(
u
,
v
)
∈
X
。
定义算子
L
δ
:
X
→
X
,
L
δ
(
u
,
v
)
(
x
)
=
δ
(
∫
0
1
G
1
(
x
,
s
)
f
1
(
s
,
v
(
s
)
)
d
s
,
∫
0
1
G
2
(
x
,
s
)
f
2
(
s
,
u
(
s
)
)
d
s
)
.
显然,
∀
δ
∈
[
0
,
1
]
,
L
δ
是紧算子,从而问题(1)的解等价于算子
L
1
在X中的不动点。
设
B
D
+
1
=
{
(
u
,
v
)
∈
X
|
‖
(
u
,
v
)
‖
<
D
+
1
}
是X上的一个球域,由引理2可知,
L
δ
在
∂
B
D
+
1
上没有不动点,记
I
:
X
→
X
为单位映射,根据Leray-Schauder度的紧同伦不变性,
∀
δ
∈
[
0
,
1
]
,有
deg
(
I
−
L
1
,
B
D
+
1
,
0
)
=
deg
(
I
−
L
δ
,
B
D
+
1
,
0
)
=
deg
(
I
−
L
0
,
B
D
+
1
,
0
)
=
deg
(
I
,
B
D
+
1
,
0
)
=
1
,
则
L
1
在
B
D
+
1
内有一个不动点
(
u
,
v
)
。结合引理1和假设(A2)和(A3)、(A5),即有
u
(
x
)
,
v
(
x
)
>
0
,
∀
x
∈
[
0
,
1
]
。
定理2 假设(A1)~(A2)成立,且
(A6)
∀
c
>
0
,
lim
y
→
0
+
h
1
(
c
h
2
(
y
)
)
y
=
∞
,
lim
y
→
+
∞
F
1
(
c
F
2
(
y
)
)
y
=
0
。
则问题(1)至少存在一个正解
(
u
,
v
)
∈
(
C
4
[
0
,
1
]
)
2
。
证明:由假设(A6),存在
β
>
α
>
0
,使得
m
1
h
1
(
m
2
h
2
(
α
)
)
≥
α
,
M
1
F
1
(
M
2
F
2
(
β
)
)
≤
β
.
令
Y
=
{
u
∈
C
[
0
,
1
]
|
α
≤
u
(
x
)
≤
β
,
x
∈
[
0
,
1
]
}
,Y为
C
[
0
,
1
]
中的有界闭凸集。定义算子
J
:
Y
→
C
[
0
,
1
]
,
J
u
(
x
)
=
∫
0
1
G
1
(
x
,
s
)
f
1
(
s
,
∫
0
1
G
2
(
s
,
t
)
f
2
(
t
,
u
(
t
)
)
d
t
)
d
s
,
x
∈
[
0
,
1
]
.
则
∀
u
∈
Z
,
J
u
(
x
)
=
∫
0
1
G
1
(
x
,
s
)
f
1
(
s
,
∫
0
1
G
2
(
s
,
t
)
f
2
(
t
,
u
(
t
)
)
d
t
)
d
s
≥
∫
0
1
G
1
(
x
,
s
)
h
1
(
∫
0
1
G
2
(
s
,
t
)
h
2
(
u
(
t
)
)
d
t
)
d
s
≥
∫
0
1
G
1
(
x
,
s
)
h
1
(
m
2
h
2
(
α
)
)
d
s
≥
m
1
h
1
(
m
2
h
2
(
α
)
)
≥
α
.
另一方面,
J
u
(
x
)
=
∫
0
1
G
1
(
x
,
s
)
f
1
(
s
,
∫
0
1
G
2
(
s
,
t
)
f
2
(
t
,
u
(
t
)
)
d
t
)
d
s
≤
∫
0
1
G
1
(
x
,
s
)
F
1
(
∫
0
1
G
2
(
s
,
t
)
F
2
(
u
(
t
)
)
d
t
)
d
s
≤
∫
0
1
G
1
(
x
,
s
)
F
1
(
M
2
F
2
(
β
)
)
d
s
≤
M
1
F
1
(
M
2
F
2
(
β
)
)
≤
β
,
因此,
J
u
∈
Y
。根据Arzela-Ascoli定理,J为全连续算子。由Schauder不动点定理,至少存在一个
u
∈
Y
,满足
J
u
=
u
。再令
v
(
x
)
=
∫
0
1
G
2
(
x
,
s
)
f
2
(
s
,
u
(
s
)
)
d
s
,
x
∈
[
0
,
1
]
,
则
v
∈
C
4
[
0
,
1
]
满足
{
v
(
4
)
(
x
)
+
b
(
x
)
v
(
x
)
=
f
2
(
x
,
u
(
x
)
)
,
x
∈
(
0
,
1
)
,
v
(
0
)
=
v
(
1
)
=
v
′
(
0
)
=
v
′
(
1
)
=
0
,
从而
u
∈
C
4
[
0
,
1
]
满足
{
u
(
4
)
(
x
)
+
a
(
x
)
u
(
x
)
=
f
1
(
x
,
v
(
x
)
)
,
x
∈
(
0
,
1
)
,
u
(
0
)
=
u
(
1
)
=
u
′
(
0
)
=
u
′
(
1
)
=
0.
定理3 假设(A1)~(A2)成立,且
(A7) 存在
p
,
q
>
0
且
p
q
<
1
,使得
∀
τ
∈
[
0
,
1
]
,有
f
1
(
x
,
τ
y
)
≥
τ
q
f
1
(
x
,
y
)
,
f
2
(
x
,
τ
y
)
≥
τ
p
f
2
(
x
,
y
)
,
y
>
0.
则问题(1)至多存在一个正解
(
u
,
v
)
∈
(
C
4
[
0
,
1
]
)
2
。
证明:设
(
u
1
,
v
1
)
和
(
u
2
,
v
2
)
是问题(1)的两个正解。定义
Λ
=
{
λ
∈
[
0
,
1
]
|
u
1
−
θ
u
2
,
v
1
−
θ
v
2
≥
0
,
x
∈
[
0
,
1
]
,
θ
∈
[
0
,
λ
]
}
,
(9)
显然,
Λ
≠
∅
。
令
τ
=
sup
Λ
且假设
τ
<
1
,则,
∀
x
∈
[
0
,
1
]
有
u
1
(
x
)
−
τ
u
2
(
x
)
≥
0
,
v
1
(
x
)
−
τ
v
2
(
x
)
≥
0
,
由假设(A7),
∀
x
∈
[
0
,
1
]
,
u
1
(
x
)
=
∫
0
1
G
1
(
x
,
s
)
f
1
(
s
,
v
1
(
s
)
)
d
s
≥
∫
0
1
G
1
(
x
,
s
)
f
1
(
s
,
τ
v
2
(
s
)
)
d
s
≥
τ
q
∫
0
1
G
1
(
x
,
s
)
f
1
(
s
,
v
2
(
s
)
)
d
s
=
τ
q
u
2
(
x
)
,
同理,
v
1
(
x
)
≥
τ
p
v
2
(
x
)
,
x
∈
[
0
,
1
]
。
从而,
(
u
1
−
τ
u
2
)
(
4
)
(
x
)
+
a
(
x
)
(
u
1
−
τ
u
2
)
(
x
)
=
f
1
(
x
,
v
1
(
x
)
)
−
τ
f
1
(
x
,
v
2
(
x
)
)
≥
(
τ
p
q
−
τ
)
f
1
(
x
,
v
2
(
x
)
)
,
且
(
v
1
−
τ
v
2
)
(
4
)
(
x
)
+
b
(
x
)
(
v
1
−
τ
v
2
)
(
x
)
=
f
2
(
x
,
u
1
(
x
)
)
−
τ
f
2
(
x
,
u
2
(
x
)
)
≥
(
τ
p
q
−
τ
)
f
2
(
x
,
u
2
(
x
)
)
.
若
∀
x
∈
(
0
,
1
)
,
f
1
(
x
,
v
2
(
x
)
)
=
0
,
f
2
(
x
,
u
2
(
x
)
)
=
0
,这与
(
u
2
,
v
2
)
是问题(1)的正解矛盾,从而存在
x
1
,
x
2
∈
(
0
,
1
)
使得
f
1
(
x
1
,
v
2
(
x
1
)
)
>
0
,
f
2
(
x
2
,
u
2
(
x
2
)
)
>
0.
又
τ
p
q
−
τ
>
0
,可得
u
1
(
x
)
−
τ
u
2
(
x
)
>
0
,
v
1
(
x
)
−
τ
v
2
(
x
)
>
0
,
则存在
μ
>
τ
,使得
μ
∈
Λ
。这与
τ
的定义矛盾,因此,
τ
=
1
,且
u
1
(
x
)
−
u
2
(
x
)
≥
0
,
v
1
(
x
)
−
v
2
(
x
)
≥
0
,
x
∈
[
0
,
1
]
.
同理可得,
u
1
(
x
)
−
u
2
(
x
)
≤
0
,
v
1
(
x
)
−
v
2
(
x
)
≤
0
,
∀
x
∈
[
0
,
1
]
.
从而,
u
1
=
u
2
,
v
1
=
v
2
。
基金项目
陕西省自然科学基础研究计划资助项目(2024JC-YBMS-075),商洛市科技计划项目(23SKJRK007),商洛学院自然科学科研项目(22SKY007, 23KYPY05),商洛学院教育教学改革研究项目(24jyjx109)。
References
[
]1
Bai, Z. (2000) The Method of Lower and Upper Solutions for a Bending of an Elastic Beam Equation. Journal of Mathematical Analysis and Applications, 248, 195-202. >https://doi.org/10.1006/jmaa.2000.6887
[
]2
Yao, Q. (2007) Existence of Solutions and/or Positive Solutions to a Semipositone Elastic Beam Equation. Nonlinear Analysis: Theory, Methods&Applications, 66, 138-150. >https://doi.org/10.1016/j.na.2005.11.016
[
]3
Lu, Y., Ma, R. and Chen, T. (2019) Global Bifurcation for Fourth-Order Differential Equations with Periodic Boundary-Value Conditions. Mathematical Notes, 106, 248-257. >https://doi.org/10.1134/s0001434619070289
[
]4
Wei, M. and Li, Y. (2021) Solvability for a Fully Elastic Beam Equation with Left-End Fixed and Right-End Simply Supported. Mathematical Problems in Engineering, 2021, Article ID: 5528270. >https://doi.org/10.1155/2021/5528270
[
]5
Ma, R. and Xu, L. (2010) Existence of Positive Solutions of a Nonlinear Fourth-Order Boundary Value Problem. Applied Mathematics Letters, 23, 537-543. >https://doi.org/10.1016/j.aml.2010.01.007
[
]6
Wang, J., Gao, C. and He, X. (2022) A Monotone Iteration for a Nonlinear Euler-Bernoulli Beam Equation with Indefinite Weight and Neumann Boundary Conditions. Open Mathematics, 20, 1594-1609. >https://doi.org/10.1515/math-2022-0533
[
]7
Ma, R. (2006) Nodal Solutions of Boundary Value Problems of Fourth-Order Ordinary Differential Equations. Journal of Mathematical Analysis and Applications, 319, 424-434. >https://doi.org/10.1016/j.jmaa.2005.06.045
[
]8
Ma, R., Wang, H. and Elsanosi, M. (2013) Spectrum of a Linear Fourth‐Order Differential Operator and Its Applications. Mathematische Nachrichten, 286, 1805-1819. >https://doi.org/10.1002/mana.201200288
[
]9
An, Y.K. and Feng, J. (2008) Ambrosetti-Prodi Type Results in a System of Second and Fourth-Order Ordinary Differential Equations. Electronic Journal of Differential Equations, 118, 1-14.
[
]10
Wang, Q.Y. and Yang, L. (2020) Positive Solutions for a Nonlinear System of Fourth-Order Ordinary Differential Equations. Electronic Journal of Differential Equations, 45, 1-15.