References
Carles, R. and Pelinovsky, D. (2014) On the Orbital Stability of Gaussian Solitary Waves in the Log-KdV Equation. Nonlinearity, 27, 3185-3202. >https://doi.org/10.1088/0951-7715/27/12/3185
Troy, W.C. (2016) Uniqueness of Positive Ground State Solutions of the Logarithmic Schrödinger Equation. Archive for Rational Mechanics and Analysis, 222, 1581-1600. >https://doi.org/10.1007/s00205-016-1028-5
Wang, Z. and Zhang, C. (2018) Convergence from Power-Law to Logarithm-Law in Nonlinear Scalar Field Equations. Archive for Rational Mechanics and Analysis, 231, 45-61. >https://doi.org/10.1007/s00205-018-1270-0
Tian, S. (2017) Multiple Solutions for the Semilinear Elliptic Equations with the Sign-Changing Logarithmic Nonlinearity. Journal of Mathematical Analysis and Applications, 454, 816-828. >https://doi.org/10.1016/j.jmaa.2017.05.015
Shuai, W. (2023) Two Sequences of Solutions for the Semilinear Elliptic Equations with Logarithmic Nonlinearities. Journal of Differential Equations, 343, 263-284. >https://doi.org/10.1016/j.jde.2022.10.014
Squassina, M. and Szulkin, A. (2014) Multiple Solutions to Logarithmic Schrödinger Equations with Periodic Potential. Calculus of Variations and Partial Differential Equations, 54, 585-597. >https://doi.org/10.1007/s00526-014-0796-8
Liu, T. and Zou, W. (2024) Sign-Changing Solution for Logarithmic Elliptic Equations with Critical Exponent. Manuscripta Mathematica, 174, 749-773.
Deng, Y., He, Q., Pan, Y. and Zhong, X. (2023) The Existence of Positive Solution for an Elliptic Problem with Critical Growth and Logarithmic Perturbation. Advanced Nonlinear Studies, 23, Article ID: 20220049. >https://doi.org/10.1515/ans-2022-0049
Gilkey, P.B. and Grubb, G. (1998) Logarithmic Terms in Asymptotic Expansions of Heat Operator Traces. Communications in Partial Differential Equations, 23, 777-792. >https://doi.org/10.1080/03605309808821365
He, Q., He, Y. and Lv, J. (2023) The Existence of Positive Solutions to the Choquard Equation with Critical Exponent and Logarithmic Term. Journal of Mathematical Analysis and Applications, 519, Article ID: 126737. >https://doi.org/10.1016/j.jmaa.2022.126737
Moroz, V. and Van Schaftingen, J. (2014) Existence of Groundstates for a Class of Nonlinear Choquard Equations. Transactions of the American Mathematical Society, 367, 6557-6579. >https://doi.org/10.1090/s0002-9947-2014-06289-2
Moroz, V. and Van Schaftingen, J. (2016) A Guide to the Choquard Equation. Journal of Fixed Point Theory and Applications, 19, 773-813. >https://doi.org/10.1007/s11784-016-0373-1
Luo, H., Ruf, B. and Tarsi, C. (2023) Bifurcation into Spectral Gaps for Strongly Indefinite Choquard Equations. Communications in Contemporary Mathematics, 26, Article ID: 2350001. >https://doi.org/10.1142/s0219199723500013
Deng, Y., Peng, S. and Yang, X. (2023) Uniqueness and Non-Degeneracy of Ground States for Choquard Equations with Fractional Laplacian. Journal of Differential Equations, 371, 299-352. >https://doi.org/10.1016/j.jde.2023.06.032
D’avenia, P., Montefusco, E. and Squassina, M. (2014) On the Logarithmic Schrödinger Equation. Communications in Contemporary Mathematics, 16, Article ID: 1350032. >https://doi.org/10.1142/s0219199713500326
Yang, X., Zhang, W. and Zhao, F. (2018) Existence and Multiplicity of Solutions for a Quasilinear Choquard Equation via Perturbation Method. Journal of Mathematical Physics, 59, Article ID: 081503. >https://doi.org/10.1063/1.5038762
Wen, L., Tang, X. and Chen, S. (2019) Ground State Sign-Changing Solutions for Kirchhoff Equations with Logarithmic Nonlinearity. Electronic Journal of Qualitative Theory of Differential Equations, No. 17, 1-13. >https://doi.org/10.14232/ejqtde.2019.1.47
Gross, L. (1975) Logarithmic Sobolev Inequalities. American Journal of Mathematics, 97, 1061-1083. >https://doi.org/10.2307/2373688
Willem, M. (1996) Minimax Theorems. Birkhäuser Boston. >https://doi.org/10.1007/978-1-4612-4146-1
Lieb, E.H. and Loss, M. (2001) Analysis. American Mathematical Society. >https://doi.org/10.1090/gsm/014