200年前,de Candolle (1825)发现块根葛藤Pueraria tuberosa (Roxb. ex Willd.) DC.缺乏岩黄耆族Hedysareae大多数物种拥有的荚果特征,建立了新属:葛属Pueraria DC.,其中包含块根葛藤和Pueraria wallichii DC.。Pueraria wallichii是de Candolle根据Nathaniel Wallich博士在尼泊尔采集的材料描述的一个种
[1]
-
[12]
。de Candolle当时根据这两个种的共有形态特征将它们联系在一起,例如,攀爬和缠绕习性、木质的圆柱形茎、三出的阔叶、圆锥花序为细长形、腋生。后来的研究发现,Pueraria wallichii是须弥葛Haymondia wallichii (DC.) A. N. Egan & B. Pan的异名,实际上隶属于豆科的另外一个属:须弥葛属Haymondia A. N. Egan & B. Pan
[1]
-
[12]
。
目前,全球葛属植物已经识别出约20种,自然分布于东亚、南亚、东南亚和西太平洋地区(日本、朝鲜、中国、印度、越南、菲律宾、澳大利亚等地),具有重要的经济价值,是纺织品、食物、造纸和建筑材料的原料。各地有引种栽培。例如,通过1876年的费城百周年工业博览会(Centennial Exposition in Philadelphia),野葛Pueraria montana var. lobata (Willd.) Maesen & S. M. Almeida ex Sanjappa & Predeep (Kudzu)从亚洲引种到美国,用于控制水土流失和牲畜饲料,现在野葛在当地已经变成了一种高危的入侵植物
[1]
-
[18]
。Pueraria phaseoloides (Roxb.) Benth.在热带地区广泛引种,用于饲料和肥田的农作物(Cover crop)。后来的分类研究发现,Pueraria phaseoloides (Roxb.) Benth.是草葛Neustanthus phaseoloides (Roxb.) Benth.的异名,应该归类在豆科的另外一个属:草葛属Neustanthus Benth.
[1]
-
[18]
。
Egan等(2016)
[12]
的取样覆盖了葛属内近80%的现存物种,利用三个DNA片段:1个细胞核DNA标记(AS2)和2个叶绿体DNA标记(matK和trnD-trnT),系统发育关系分析结果显示,葛属内的物种是多系(存在5个谱系),认为应该承认草葛属的分类地位,应该将Pueraria stricta Kurz移到琼豆属Teyleria Backer内,Pueraria stricta是豆科琼豆属的紫花琼豆Teyleria stricta (Kurz) A. N. Egan & B. Pan的异名,提出建立两个新属:须弥葛属和苦葛属Toxicopueraria A. N. Egan & B. Pan。
Table 1. Samples and Genbank accession numbers of chloroplast genome used in this studyTable 1. Samples and Genbank accession numbers of chloroplast genome used in this study 表1. 供试样品及叶绿体基因组序列号
拉丁学名
中文名称
序列号
1
Pueraria edulis Pamp.
食用葛
OM686893.1
2
Pueraria edulis Pamp.
食用葛
OM048895.1
3
Pueraria montana (Lour.) Merr.
葛藤
OM156458.1
4
Pueraria montana (Lour.) Merr.
葛藤
OP963905.1
5
Pueraria montana (Lour.) Merr.
葛藤
OP963906.1
6
Pueraria montana (Lour.) Merr.
葛藤
OP963907.1
7
Pueraria montana (Lour.) Merr.
葛藤
OP963908.1
8
Pueraria montana var. thomsonii (Benth.) M.R. Almeida
粉葛
OM156440.1
9
Pueraria montana var. thomsonii (Benth.) M.R. Almeida
粉葛
OM156442.1
10
Pueraria montana var. thomsonii (Benth.) M.R. Almeida
粉葛
OM156453.1
11
Amphicarpaea ferruginea Benth.
锈毛两型豆*
ON050971.1
12
Orbexilum onobrychis (Nutt.) Rydb.
皱荚红豆*
注:*外类群。
Table 2. The amount and base composition of variable nucleotide sites for classification of three species/varietas from the genus Pueraria DC. of the FabaceaeTable 2. The amount and base composition of variable nucleotide sites for classification of three species/varietas from the genus Pueraria DC. of the Fabaceae 表2. 豆科葛属3种/变种的具有分类价值的核苷酸变异位点数目及碱基构成
*
A (%)**
T (%)**
C (%)**
G (%)**
合计(%)***
1a
150 (26.04)
155 (26.91)
139 (24.13)
132 (22.92)
576 (92.31/75.10)
1b
165 (28.65)
171 (29.69)
127 (22.05)
113 (19.62)
576 (92.31/75.10)
2a
2 (20.00)
5 (50.00)
1 (10.00)
2 (20.00)
10 (1.60/1.30)
2b
3 (30.00)
0 (0.00)
3 (30.00)
4 (40.00)
10 (1.60/1.30)
3a
7 (18.42)
15 (39.47)
10 (26.32)
6 (15.79)
38 (6.09/4.95)
3b
12 (31.58)
6 (15.79)
12 (31.58)
8 (21.05)
38 (6.09/4.95)
合计
624/767
注:*该列的序号与检索表内的序号对应;1a为食用葛Pueraria edulis,2a为葛藤Pueraria montana,3a为粉葛Pueraria montana var. thomsonii。**核苷酸变异位点数(在4种碱基中的占比);***此列括号中,前一个数字是在物种特有变异位点总数(624)中所占的比例;后一个数字是在全部核苷酸变异位点总数(767)中所占的比例。
Figure 1. Molecular classification key to three species/varietas of the genus Pueraria DC. of the Fabaceae based on the taxon-specific variable nucleotide sites from the complete chloroplast genome--图1. 基于叶绿体基因组的物种特有核苷酸变异位点的豆科葛属3个种/变种的分子分类检索表--图1. 基于叶绿体基因组的物种特有核苷酸变异位点的豆科葛属3个种/变种的分子分类检索表Figure 1. Molecular classification key to three species/varietas of the genus Pueraria DC. of the Fabaceae based on the taxon-specific variable nucleotide sites from the complete chloroplast genome--图1. 基于叶绿体基因组的物种特有核苷酸变异位点的豆科葛属3个种/变种的分子分类检索表--图1. 基于叶绿体基因组的物种特有核苷酸变异位点的豆科葛属3个种/变种的分子分类检索表Figure 1. Molecular classification key to three species/varietas of the genus Pueraria DC. of the Fabaceae based on the taxon-specific variable nucleotide sites from the complete chloroplast genome--图1. 基于叶绿体基因组的物种特有核苷酸变异位点的豆科葛属3个种/变种的分子分类检索表--图1. 基于叶绿体基因组的物种特有核苷酸变异位点的豆科葛属3个种/变种的分子分类检索表
Figure 2. Phylogenetic tree of the three species/varietas of the genus Pueraria DC. based on complete chloroplast genome using the neighbour-joining method with the Tamura 3-parameter model (The numbers near the branches are bootstrap support values (%) of 1000 replications)--图2. 利用邻接法和Tamura 3参数模型获得的基于叶绿体全基因组序列的葛属3个种/变种的系统发生关系(分支图中的数字为1000次重复抽样的自展支持率)--3. 结果
Table 3. Specimens of Pueraria in the Chinese Virtual HerbariumTable 3. Specimens of Pueraria in the Chinese Virtual Herbarium 表3. 中国数字植物标本库馆藏的葛属植物标本
种/变种
中文名
标本份数
1
Pueraria alopecuroides Craib
密花葛
56
2
Pueraria bella Prain
1
3
Pueraria bouffordii H. Ohashi
贵州葛
2
4
Pueraria calycina Franch.
黄毛野葛
16
5
Pueraria candollei Wall. ex Benth.
2
6
Pueraria edulis Pamp.
食用葛
92
7
Pueraria grandiflora B. Pan bis & Bing Liu
大花葛
1
8
Pueraria montana (Lour.) Merr.
葛藤
724
9
Pueraria montana var. lobata (Willd.) Maesen & S.M. Almeida ex Sanjappa & Predeep
野葛
3755
10
Pueraria montana (Lour.) Merr. var. montana
山葛藤
32
11
Pueraria montana var. thomsonii (Benth.) M.R. Almeida
粉葛
394
12
Pueraria neocaledonica Harms
新几内亚葛
1
13
Pueraria pulcherrima (Koord.) Koord.-Schum.
2
14
Pueraria xyzhui H. Ohashi & Iokawa
2
合计
5080
4. 讨论
中国数字植物标本库(
http://www.cvh.ac.cn/
)的数据显示,葛属标本的采集记录最早是1900年,经过120多年的积累,来自国内外的葛属植物标本共计5080份,14个种/变种,含形态特征图片和文字描述,占葛属植物全球物种数量(20种)的约70% (
表3
)。存在同物异名和同名异物现象(
https://powo.science.kew.org/
),例如,Pueraria forrestii W.E. Evans是黄毛野葛Pueraria calycina Franch.的异名;Pueraria bicalcarata Gagnep.及Pueraria edulis var. likiangensis P.C. Li是食用葛Pueraria edulis Pamp.的异名;Pueraria lobata var. montana (Lour.) Maesen及Pueraria omeiensis T. Tang & Wang是葛藤Pueraria montana (Lour.) Merr.的异名;Pueraria hirsuta (Thunb.) C.K. Schnei、Pueraria koten H. Lév. & Vaniot、Pueraria lobata (Willd.) Ohwi、Pueraria pseudohirsuta T. Tang & Wang及Pueraria thunbergiana (Siebold & Zucc.) Benth.是野葛Pueraria montana var. lobata (Willd.) Maesen & S. M. Almeida ex Sanjappa & Predeep的异名;Pueraria thunbergiana var. formosana Hosok.及Pueraria tonkinensis Gagnep.是山葛藤Pueraria montana var. montana的异名;Pueraria lobata var. thomsonii (Benth.) Maesen、Pueraria lobata subsp. thomsonii (Benth.) H. Ohashi & Tateishi及Pueraria thomsonii Benth.是粉葛Pueraria montana var. thomsonii (Benth.) M.R. Almeida的异名。
如下11个名称已被分类处理为豆科其它6个属的物种的异名,例如,Pueraria seguinii H. Lév.是豆科木豆属Cajanus Adans.的大花虫豆Cajanus grandiflorus (Benth. ex Baker) Maesen的异名;Pueraria wallichii DC.是豆科须弥葛属Haymondia A. N. Egan & B. Pan的须弥葛Haymondia wallichii (DC.) A. N. Egan & B. Pan的异名;Pueraria phaseoloides (Roxb.) Benth.及Pueraria phaseoloides var. phaseoloides是豆科草葛属Neustanthus Benth.的草葛Neustanthus phaseoloides (Roxb.) Benth.的异名;Pueraria javanica (Benth.) Benth.及Pueraria phaseoloides var. javanica (Benth.) Baker是草葛属的爪哇葛Neustanthus phaseoloides var. javanicus (Benth.) A. N. Egan & B. Pan的异名;Pueraria collettii Prain及Pueraria stricta Kurz是豆科琼豆属Teyleria Backer的紫花琼豆Teyleria stricta (Kurz) A. N. Egan & B. Pan的异名;Pueraria peduncularis (Benth.) Graham ex Benth.及Pueraria peduncularis var. violacea Franch.是豆科苦葛属Toxicopueraria A. N. Egan & B. Pan的苦葛Toxicopueraria peduncularis (Benth.) A. N. Egan & B. Pan的异名;Pueraria yunnanensis Franch.是苦葛属的云南苦葛Toxicopueraria yunnanensis (Franch.) A. N. Egan & B. Pan的异名;Pueraria chaneti H. Lév是豆科绿豆属Vigna Savi的绿豆Vigna radiata (L.) R. Wilczek的异名。
51%以上的葛属植物标本的采集日期为50年以前。葛属有7个种/变种拥有3份以上的标本,例如,野葛Pueraria montana var. lobata (Willd.) Maesen & S.M. Almeida ex Sanjappa & Predeep (3755份)、葛藤Pueraria montana (Lour.) Merr. (724份)以及粉葛Pueraria montana var. thomsonii (Benth.) M. R. Almeida (394份),即50%的物种的标本的合计份数占到了该属的标本总数的99.78%。50%的种/变种馆藏标本不足3份。现有的标本材料不足,严重制约了葛属的全球所有物种的分子鉴定和系统发生关系研究。在出现过的葛属物种名称(41)中,异名(27)占65.85%。同名异物和同物异名造成了一定的混乱,制约着物种鉴定研究和相关领域的发展。对21国40个植物标本馆的4500份标本的取样调查结果显示,50%以上的热带植物标本存在名称鉴定错误
[36]
。叶绿体基因组序列使我们有机会在微观世界的约15万个核苷酸这样的大数据中筛选体现物种间遗传差异的分子性状,与依赖形态性状的物种鉴定相比,信息量增加了100~1000倍左右,提高了物种鉴定的分辨力和客观性。分子鉴定是对形态鉴定的辅助、补充和验证。利用形态鉴定可靠的标本或活植物作为研究材料,建立叶绿体基因组数据库,也有助于标本馆科尾存疑标本的清理、核准和鉴定。叶绿体基因组的物种标准数据库一旦成功建立,可用于未知样品的物种鉴定。全球范围内调查和补充采集葛属植物不同基因型的标本和活植物,有助于推动该属植物资源的分类修订和可持续利用,工作量仍然很大
[37]
-
[39]
。分子检索表中的具有分类价值的单核苷酸变异位点的形成机制,有待利用化学和量子科学领域的新技术深入研究。
References
de Candolle, A.P. (1825) Mémoires sur les Légumineuses. Belin-Mandar, Auguste-Jean. >https://doi.org/10.5962/bhl.title.124031
Lackey, J.A. (1977) Neonotonia, a New Generic Name to Include Glycine wightii (Arnott) Verdcourt (Leguminosae, Papilionoideae). Phytologia, 37, 209-212.
Lackey, J.A. (1977) A Revised Classification of Phaseoleae (Leguminosae: Papilionoideae) and Its Relation to Canavanine Distribution. Botanical Journal of the Linnean Society, 74, 163-178. >https://doi.org/10.1111/j.1095-8339.1977.tb01173.x
Lackey, J.A. (1977) A Synopsis of Phaseoleae (Leguminosae, Papilionoideae). Ph.D. Thesis, Iowa State University.
van der Maesen, L.J.G. (1985) Revision of the Genus Pueraria DC. with Some Notes on Teyleria Backer: Leguminosae. Taylor&Francis.
van der Maesen, L.J.G. (1994) Pueraria, the Kudzu and Its Relatives, an Update of the Taxonomy. In: Sorensen, M., Ed., Proceedings of the First International Symposium on Tuberous Legumes, Guadeloupe, FWI, 55-86.
van der Maesen, L.J.G. (2002) Pueraria: Botanical Characteristics. In: Keung, W.M., Ed., Pueraria: The Genus Pueraria, Taylor&Francis, 1-28.
van der Maesen, L.J.G. and Almeida, S.M. (1988) Two Corrections to the Nomenclature in the Revision of Pueraria DC. The Journal of the Bombay Natural History Society, 85, 233-234.
中国科学院中国植物志编辑委员会. 中国植物志第41卷: 葛属[M]. 北京: 科学出版社, 1995. >https://www.iplant.cn
Wu, Z.Y., Hong, D.Y. and Raven, P.H. (2010) Pueraria Candolle. Science Press, Beijing and Missouri Botanical Garden Press, 244-248. >https://www.iplant.cn/info/Pueraria?t=foc
Keung, W.M. (2002) Pueraria: The Genus Pueraria. CRC Press. >https://doi.org/10.1201/9780203300978
Egan, A.N., Vatanparast, M. and Cagle, W. (2016) Parsing Polyphyletic Pueraria: Delimiting Distinct Evolutionary Lineages through Phylogeny. Molecular Phylogenetics&Evolution, 104, 44-59. >https://doi.org/10.1016/j.ympev.2016.08.001
Hoffberg, S.L., Bentley, K.E., Lee, J.B., Myhre, K.E., Iwao, K., Glenn, T.C. and Mauricio, R. (2015) Characterization of 15 Microsatellite Loci in Kudzu (Pueraria montana var. lobata) from the Native and Introduced Ranges. Conservation Genetics Resources, 7, 403-405. >https://doi.org/10.1007/s12686-014-0381-7
Heider, B., Fischer, E., Berndl, T. and Schultze-Kraft, R. (2007) Analysis of Genetic Variation among Accessions of Pueraria montana (Lour.) Merr. var. lobata and Pueraria phaseoloides (Roxb.) Benth. Based on RAPD Markers. Genetic Resources and Crop Evolution, 54, 529-542. >https://doi.org/10.1007/s10722-006-0009-1
Li, J., Yang, M., Li, Y., Jiang, M., Liu, C., He, M. and Wu, B. (2022) Chloroplast Genomes of Two Pueraria DC. Species: Sequencing, Comparative Analysis and Molecular Marker Development. FEBS Open Bio, 12, 349-361. >https://doi.org/10.1002/2211-5463.13335
Zhang, Z.Y., Tang, T.M., Zhu, P., et al. (2019) Characterization of the Complete Chloroplast Genome Sequence of Pueraria montana var. lobata and Its Phylogenetic Implications. Mitochondrial DNA Part B, 4, 1998-2000. >https://doi.org/10.1080/23802359.2019.1617085
Zhou, Y., Shang, X.H., Xiao, L., et al. (2023) Comparative Plastomes of Pueraria montana var. lobata (Leguminosae: Phaseoleae) and Closely Related Taxa: Insights into Phylogenomic Implications and Evolutionary Divergence. BMC Genomics, 24, Article No. 299. >https://doi.org/10.1186/s12864-023-09356-8
Sun, J., Wang, Y., Qiao, P., Zhang, L., Li, E., Dong, W., Zhao, Y. and Huang, L. (2023) Pueraria Montana Population Structure and Genetic Diversity Based on Chloroplast Genome Data. Plants, 12, Article 2231. >https://doi.org/10.3390/plants12122231
Dong, W.P., Xu, C., Li, D.L., Jin, X.B., Li, R.L., Lu, Q. and Suo, Z.L. (2016) Comparative Analysis of the Complete Chloroplast Genome Sequences in Psammophytic Haloxylon Species (Amaranthaceae). PeerJ, 4, e2699. >https://doi.org/10.7717/peerj.2699
Dong, W.P., Xu, C., Li, W.Q., Xie, X.M., Lu, Y.Z., Liu, Y.L., Jin, X.B. and Suo, Z.L. (2017) Phylogenetic Resolution in Juglans Based on Complete Chloroplast Genomes and Nuclear DNA Sequences. Frontiers in Plant Science, 8, Article 1148. >https://doi.org/10.3389/fpls.2017.01148
Xu, C., Dong, W.P., Li, W.Y., Lu, Y.Z., Xie, X.M., Jin, X.B., Shi, J.P., He, K.H. and Suo, Z.L. (2017) Comparative Analysis of Six Lagerstroemia Complete Chloroplast Genomes. Frontiers in Plant Science, 8, Article 15. >https://doi.org/10.3389/fpls.2017.00015
Li, W.Q., Liu, Y.L., Yang, Y., Xie, X.M., Lu, Y.Z., Yang, Z.R., Jin, X.B., Dong, W.P. and Suo, Z.L. (2018) Interspecific Chloroplast Genome Sequence Diversity and Genomic Resources in Diospyros. BMC Plant Biology, 18, Article No. 210. >https://doi.org/10.1186/s12870-018-1421-3
Dong, W.P., Xu, C., Liu, Y.L., Shi, J.P., Li, W.Y. and Suo, Z.L. (2021) Chloroplast Phylogenomics and Divergence Times of Lagerstroemia (Lythraceae). BMC Genomics, 22, Article No. 434. >https://doi.org/10.1186/s12864-021-07769-x
Guo, C., Liu, K.J., Li, E.Z., Chen, Y.F., He, J.Y., Li, W.Y., Dong, W.P. and Suo, Z.L. (2023) Maternal Donor and Genetic Variation of Lagerstroemia indica Cultivars. International Journal of Molecular Sciences, 24, Article 3606. >https://doi.org/10.3390/ijms24043606
Suo, Z.L., Zhang, C.H., Zheng, Y.Q., He, L.X., Jin, X.B., Hou, B.X. and Li, J.J. (2012) Revealing Genetic Diversity of Tree Peonies at Micro-Evolution Level with Hyper-Variable Chloroplast Markers and Floral Traits. Plant Cell Reports, 31, 2199-2213. >https://doi.org/10.1007/s00299-012-1330-0
Suo, Z.L., Chen, L.N., Pei, D., Jin, X.B. and Zhang, H.J. (2015) A New Nuclear DNA Marker from Ubiquitin Ligase Gene Region for Genetic Diversity Detection of Walnut Germplasm Resources. Biotechnology Reports, 5, 40-45. >https://doi.org/10.1016/j.btre.2014.11.003
李斌, 左云娟, 刘艳磊, 等. 基于叶绿体基因组的单核苷酸多态位点的落叶松属(Larix Mill.)植物的分子鉴定新方法[J]. 植物学研究, 2023, 12(4): 227-239. >https://doi.org/10.12677/br.2023.124030
刘美辰, 左云娟, 刘艳磊, 等. 基于叶绿体全基因组核苷酸变异位点的大豆属(Glycine Willd.)植物的分子鉴定新方法[J]. 植物学研究, 2024, 13(2): 124-142. >https://doi.org/10.12677/BR.2024.132015
刘美辰, 张建农, 左云娟, 等. 基于叶绿体全基因组序列变异位点的葫芦科植物资源遗传多样性的分子鉴定新方法[J]. 植物学研究, 2024, 13(3): 289-314. >https://doi.org/10.12677/br.2024.133032
刘美辰, 左云娟, 靳晓白, 等. 基于叶绿体基因组变异位点的兰属(兰科)植物资源遗传多样性的分子鉴定新方法[J]. 计算生物学, 2024, 14(2): 13-28. >https://doi.org/10.12677/hjcb.2024.142002
刘美辰, 李斌, 左云娟, 等. 基于质体基因组序列变异位点的松科油杉属和冷杉属植物资源遗传多样性的分子鉴定新方法[J]. 植物学研究, 2024, 13(4): 434-445. >https://doi.org/10.12677/br.2024.134046
刘美辰, 刘一心, 左云娟, 等. 基于叶绿体基因组变异位点的百合属(百合科)植物资源遗传多样性的分子鉴定新方法[J]. 植物学研究, 2024, 13(4): 469-486. >https://doi.org/10.12677/br.2024.134050
Katoh, K. and Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30, 772-780. >https://doi.org/10.1093/molbev/mst010
Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874. >https://doi.org/10.1093/molbev/msw054
Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado P., Ramos-Onsins, S.E. and Sánchez-Gracia, A. (2017) DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34, 3299-3302. >https://doi.org/10.1093/molbev/msx248
Goodwin, Z.A., Harris, D.J., Filer, D., Wood, J.R.I. and Scotland, R.W. (2015) Wide Spread Mistaken Identity in Tropical Plant Collections. Current Biology, 25, R1057-R1069. >https://doi.org/10.1016/j.cub.2015.10.002
洪德元. 生物多样性事业需要科学、可操作的物种概念[J]. 生物多样性, 2016, 24(9): 979-999.
王文采, 等. 世界植物简志[M]. 北京: 北京出版集团北京出版社, 2021: 1-172.
朱旭, 李嘉奇. 全球协同落实《昆明-蒙特利尔全球生物多样性框架》的挑战与出路: 基于SFIC模型的分析[J]. 生物多样性, 31(8): 23167.