Figure 3. (a) Polarization curves of Mo-Ni5Se5, Ni5Se5/NF, NF; (b) Electrochemical impedance spectra of Mo-Ni5Se5, Ni5Se5/NF, NF; (c) Cdl value diagram of Mo-Ni5Se5, Ni5Se5/NF and NF; (d)~(f) represents the cyclic voltammetry curves of Mo-Ni5Se5, Ni5Se5/NF and NF at different scanning rates, respectively.--图3. (a) Mo-Ni5Se5、Ni5Se5/NF、NF的极化曲线;(b) Mo-Ni5Se5、Ni5Se5/NF、NF的电化学阻抗谱;(c) Mo-Ni5Se5、Ni5Se5/NF、NF的双层电容;(d)~(f)分别表示Mo-Ni5Se5、Ni5Se5/NF、NF在不同扫描速率下的循环伏安曲线--
Figure 4. a) Polarization curves of Mo-Ni5Se5, Ni5Se5/NF, NF; b) Electrochemical impedance spectra of Mo-Ni5Se5, Ni5Se5/NF, NF; c) Cdl value diagram of Mo-Ni5Se5, Ni5Se5/NF and NF; d~f) represents the cyclic voltammetry curves of Mo-Ni5Se5, Ni5Se5/NF and NF at different scanning rates, respectively.--图4. a) Mo-Ni5Se5、Ni5Se5/NF、NF的极化曲线;b) Mo-Ni5Se5、Ni5Se5/NF、NF的电化学阻抗谱;c) Mo-Ni5Se5、Ni5Se5/NF、NF的双层电容;d~f) 分别表示Mo-Ni5Se5、Ni5Se5/NF、NF在不同扫描速率下的循环伏安曲线--4. 结论
本研究旨在评估钼金属掺杂硒化镍纳米材料在电催化全解水反应中的催化性能。通过使用1.0 M KOH电解液和典型的三电极体系,采用扫描速率为5 mVs−1的条件对Mo-Ni5Se5,Ni5Se5与NF的OER活性进行了测试。结果显示,Mo-Ni5Se5表现出与两种前驱体相比更高的本征活性。进一步的研究表明,Mo-Ni5Se5具有相对较大的电化学表面积和较小的电荷转移电阻(Rct),表明其具有优异的电导率和电催化动力学特性。此外,为了评估催化剂的析氢性能,我们还进行了析氢反应(HER)的测试。采用碳棒和Ag/AgCl电极作为对电极和参比电极,并将电位校准到标准氢电极(RHE)。结果显示,Mo-Ni5Se5相对于Ni5Se5与NF表现出更好的析氢性能。与此同时,Mo-Ni5Se5展示出较大的双电层电容和较小的电荷转移电阻(Rct),表明其具有较大的电化学表面积和较好的电导率。这些都是其获得较好催化性能的原因。
References
Li, Z., Hu, M., Wang, P., Liu, J., Yao, J. and Li, C. (2021) Heterojunction Catalyst in Electrocatalytic Water Splitting. Coordination Chemistry Reviews, 439, Article 213953. >https://doi.org/10.1016/j.ccr.2021.213953
Chandrasekaran, S., Yao, L., Deng, L., Bowen, C., Zhang, Y., Chen, S., et al. (2019) Recent Advances in Metal Sulfides: From Controlled Fabrication to Electrocatalytic, Photocatalytic and Photoelectrochemical Water Splitting and Beyond. Chemical Society Reviews, 48, 4178-4280. >https://doi.org/10.1039/c8cs00664d
Duan, C., Tang, C., Yu, S., Li, L., Li, J. and Zhou, Y. (2023) Efficient Electrocatalytic Desulfuration and Synchronous Hydrogen Evolution from H2S via Anti-Sulfuretted Nise Nanowire Array Catalyst. Applied Catalysis B: Environmental, 324, Article 122255. >https://doi.org/10.1016/j.apcatb.2022.122255
Song, J., Wei, C., Huang, Z., Liu, C., Zeng, L., Wang, X., et al. (2020) A Review on Fundamentals for Designing Oxygen Evolution Electrocatalysts. Chemical Society Reviews, 49, 2196-2214. >https://doi.org/10.1039/c9cs00607a
Liu, Y., Chen, Y., Tian, Y., Sakthivel, T., Liu, H., Guo, S., et al. (2022) Synergizing Hydrogen Spillover and Deprotonation by the Internal Polarization Field in a MoS
2/NiPS
3Vertical Heterostructure for Boosted Water Electrolysis. Advanced Materials, 34, Article 2203615. >https://doi.org/10.1002/adma.202203615
Shaikh, N., Mukhopadhyay, I. and Ray, A. (2022) Heterointerfaces of Nickel Sulphides and Selenides on Ni-Foam as Efficient Bifunctional Electrocatalysts in Acidic Environments. Journal of Materials Chemistry A, 10, 12733-12746. >https://doi.org/10.1039/d2ta01630c
Li, M., Zhu, H., Yuan, Q., Li, T., Wang, M., Zhang, P., et al. (2022) Proximity Electronic Effect of Ni/Co Diatomic Sites for Synergistic Promotion of Electrocatalytic Oxygen Reduction and Hydrogen Evolution. Advanced Functional Materials, 33, Article 2210867. >https://doi.org/10.1002/adfm.202210867
Sun, L., Reddu, V. and Wang, X. (2022) Multi-Atom Cluster Catalysts for Efficient Electrocatalysis. Chemical Society Reviews, 51, 8923-8956. >https://doi.org/10.1039/d2cs00233g
Dai, W., Zhu, Y., Ye, Y., Pan, Y., Lu, T. and Huang, S. (2022) Electrochemical Incorporation of Heteroatom into Surface Reconstruction Induced Ni Vacancy of Nixo Nanosheet for Enhanced Water Oxidation. Journal of Colloid and Interface Science, 608, 3030-3039. >https://doi.org/10.1016/j.jcis.2021.11.026
Pei, Z., Lu, X.F., Zhang, H., Li, Y., Luan, D. and Lou, X.W. (2022) Highly Efficient Electrocatalytic Oxygen Evolution Over Atomically Dispersed Synergistic Ni/Co Dual Sites. Angewandte Chemie International Edition, 61, e202207537. >https://doi.org/10.1002/anie.202207537
Li, Y., Zeng, Y., Chen, Y., Luan, D., Gao, S. and Lou, X.W. (2022) Mesoporous N‐Rich Carbon with Single‐Ni Atoms as a Multifunctional Sulfur Host for Li‐S Batteries. Angewandte Chemie International Edition, 61, e202212680. >https://doi.org/10.1002/anie.202212680
Liu, Y., Sakthivel, T., Hu, F., Tian, Y., Wu, D., Ang, E.H., et al. (2023) Enhancing the d/p‐Band Center Proximity with Amorphous‐Crystalline Interface Coupling for Boosted pH‐Robust Water Electrolysis. Advanced Energy Materials, 13, Article 2203797. >https://doi.org/10.1002/aenm.202203797
Wang, S., Jiang, Q., Ju, S., Hsu, C., Chen, H.M., Zhang, D., et al. (2022) Identifying the Geometric Catalytic Active Sites of Crystalline Cobalt Oxyhydroxides for Oxygen Evolution Reaction. Nature Communications, 13, Article No. 6650. >https://doi.org/10.1038/s41467-022-34380-9
Nie, F., Li, Z., Dai, X., Yin, X., Gan, Y., Yang, Z., et al. (2022) Interfacial Electronic Modulation on Heterostructured NiSe@CoFe LDH Nanoarrays for Enhancing Oxygen Evolution Reaction and Water Splitting by Facilitating the Deprotonation of OH to O. Chemical Engineering Journal, 431, Article 134080. >https://doi.org/10.1016/j.cej.2021.134080
Wang, J., Zhang, J., Hu, Y., Jiang, H. and Li, C. (2022) Activating Multisite High-Entropy Alloy Nanocrystals via Enriching M-Pyridinic N-C Bonds for Superior Electrocatalytic Hydrogen Evolution. Science Bulletin, 67, 1890-1897. >https://doi.org/10.1016/j.scib.2022.08.022
Lei, H., Ma, L., Wan, Q., Tan, S., Yang, B., Wang, Z., et al. (2022) Promoting Surface Reconstruction of NiFe Layered Double Hydroxide for Enhanced Oxygen Evolution. Advanced Energy Materials, 12, Article 2202522. >https://doi.org/10.1002/aenm.202202522
Hu, J., Liang, Y.Q., Wu, S.L., Li, Z.Y., Shi, C.S., Luo, S.Y., et al. (2022) Hierarchical Nickle-Iron Layered Double Hydroxide Composite Electrocatalyst for Efficient Oxygen Evolution Reaction. Materials Today Nano, 17, Article 100150. >https://doi.org/10.1016/j.mtnano.2021.100150
Nai, J., Xu, X., Xie, Q., Lu, G., Wang, Y., Luan, D., et al. (2021) Construction of Ni(CN)
2/NiSe
2Heterostructures by Stepwise Topochemical Pathways for Efficient Electrocatalytic Oxygen Evolution. Advanced Materials, 34, Article 2104405. >https://doi.org/10.1002/adma.202104405
Chang, K., Tran, D.T., Wang, J., Kim, N.H. and Lee, J.H. (2022) A 3D Hierarchical Network Derived from 2D Fe-Doped NiSe Nanosheets/Carbon Nanotubes with Enhanced OER Performance for Overall Water Splitting. Journal of Materials Chemistry A, 10, 3102-3111. >https://doi.org/10.1039/d1ta07393a
Jeghan, S.M.N., Kim, D., Lee, Y., Kim, M. and Lee, G. (2022) Designing a Smart Heterojunction Coupling of Cobalt-Iron Layered Double Hydroxide on Nickel Selenide Nanosheets for Highly Efficient Overall Water Splitting Kinetics. Applied Catalysis B: Environmental, 308, Article 121221. >https://doi.org/10.1016/j.apcatb.2022.121221
Bao, W., Yang, C., Ai, T., Zhang, J., Zhou, L., li, Y., et al. (2023) Modulating Interfacial Charge Distribution of NiSe Nanoarrays with NiFe-LDH Nanosheets for Boosting Oxygen Evolution Reaction. Fuel, 332, Article 126227. >https://doi.org/10.1016/j.fuel.2022.126227
Pan, Z., Tang, Z., Yaseen, M. and Zhan, Y. (2022) NiSe and Fe-Based Layerd Double Hydroxide Nanosheet/Ni Foam Bifunctional Catalyst for Water Splitting. ACS Applied Nano Materials, 5, 16793-16803. >https://doi.org/10.1021/acsanm.2c03764
Zheng, X., Sun, A., Qiu, Y., Wang, Z., Xu, J. and Liu, J. (2023) Controllable Atoms Implantation for Inducing High Valency Nickel towards Optimizing Electronic Structure for Enhanced Overall Water Splitting. Journal of Colloid and Interface Science, 650, 1966-1973. >https://doi.org/10.1016/j.jcis.2023.07.131
Tian, L., Chen, Z., Wang, T., Cao, M., Lu, X., Cheng, W., et al. (2023) Mo Doping and Se Vacancy Engineering for Boosting Electrocatalytic Water Oxidation by Regulating the Electronic Structure of Self-Supported CO
9Se
8@NiSe. Nanoscale, 15, 259-265. >https://doi.org/10.1039/d2nr05410h
Li, Y., Bao, W., Zhang, J., Ai, T., Wu, D., Wang, H., et al. (2023) Ultrathin MoS
2Nanosheets Decorated on Nise Nanowire Arrays as Advanced Trifunctional Electrocatalyst for Overall Water Splitting and Urea Electrolysis. Journal of Industrial and Engineering Chemistry, 121, 510-518. >https://doi.org/10.1016/j.jiec.2023.02.006