Figure 2. (a)~(b) SEM diagram of CoFeNiZn-MOF (c)~(d) SEM diagram of CoFeNiZnP-MOF--图2. (a)~(b) CoFeNiZn-MOF的SEM图(c)~(d) CoFeNiZnP-MOF的SEM图--3.2. CoFeNiZnP-MOF催化剂的形貌表征Figure 3. Elemental energy spectra of CoFeNiZnP-MOF--图3. CoFeNiZnP-MOF的元素能谱图--
Figure 4. (a) At a scan rate of 5 mV/s and 80% IR compensation, Polarization curves of different electrode materials (b) Comparison of overpotential when the current density is 50, 100 and 120 mA cm−2, respectively (c) Tafel diagram of the corresponding electrode (d) Calculation of the Cdl value diagram based on the CV curve obtained by different scanning rates (to a term of expression) (ja~jc) /2) (e) Nyquist diagram (EIS) of different catalysts at an overpotential of 5 mV/s (f) Illustration from the polarization curve (f) of CoFeNiZnP-MOF catalyst before and after 1000 cycles CV. Under constant overpotential, the current density change curve of ~14 h was continuously tested--图4. (a) 扫描速率为5 mV/s和80% IR补偿时,不同电极材料的极化曲线(b) 电流密度分别为50、100和120 mA cm−2时的过电位比较(c) 相应电极的Tafel图(d)依据不同扫描速率得到的CV曲线计算Cdl值图(j = (ja~jc)/2) (e) 不同催化剂在过电位为5 mV/s时的奈奎斯特图(EIS) (f) CoFeNiZnP-MOF催化剂1000圈CV前后的极化曲线(f)中的插图,恒定过电位下,连续测试~14 h的电流密度变化曲线--Figure 5. Cyclic voltammetry of (a)~(c)NF, CoFeNiZnP-MOF, CoFeNiZn-MOF electrodes at 10~60 mV s−1, 0.12~0.22 V--图5. (a)~(c)NF, CoFeNiZnP-MOF,CoFeNiZn-MOF电极在10~60 mV s−1,0.12~0.22 V下的循环伏安图--3.4. OER催化性能测试
在电化学工作站中,我们采用不同的电化学测试方法,比较不同催化剂在1 M KOH溶液的OER性能。首先,以5 mV s−1的扫描速率获得各个材料的LSV曲线(
图6(a)
)。
图6(b)
取电流密度为50 mA cm−2、100 mA cm−2、200 mA cm−2时不同材料的过电位,CoFeNiZnP-MOF的过电位依次为297、330、369 mV,明显优于CoFeNiZn-MOF (350、376、414 mV)和NF (385、411、450 mV)。在电流密度为100 mA cm−2,CoFeNiZnP-MOF (330 mV)的电催化性能可以和RuO2(309 mV)相媲美。如
图6(c)
不同催化剂的Tafel,CoFeNiZnP-MOF (87 mV dec−1)的斜率小于CoFeNiZn-MOF (145 mV dec−1)和NF (182 mV dec−1),接近RuO2(77 mV dec−1),较低的Tafel斜率表明CoFeNiZnP-MOF有高效OER催化活性。
Figure 6. (a) At a scan rate of 5 mV/s and 80% IR compensation, Polarization curves of different electrode materials (b) Comparison of overpotential when the current density is 50, 100 and 200 mA cm−2, respectively (c) Tafel diagram of the corresponding electrode (d) Calculation of the Cdl value diagram based on the CV curve obtained by different scanning rates (to a term of (ja − jc) /2) (e) Overpotential of different catalysts is 5 The Nyquist diagram (EIS) at mV/s (f) is illustrated in the polarization curve (f) of CoFeNiZnP-MOF catalyst before and after 1000 cycles of testing. The current density change curve is continuously tested for ~40 h at a voltage of 0.6 V--图6. (a)扫描速率为5 mV/s和80% IR补偿时,不同电极材料的极化曲线(b)电流密度分别为50、100和200 mA cm−2时的过电位比较(c)相应电极的Tafel图(d)根据不同扫描速率得到的CV曲线计算Cdl值图(j = (ja − jc)/2) (e) 不同催化剂在过电位为5 mV/s时的奈奎斯特图(EIS) (f) CoFeNiZnP-MOF催化剂进行1000次循环测试前后的极化曲线(f)中的插图,0.6 V电压下,连续测试~40 h的电流密度变化曲线--Figure 7. Cyclic voltammetry of (a)~(c) NF, CoFeNiZnP-MOF, CoFeNiZn-MOF electrodes at 1.12~1.22 V, 10~60 mV s−1--图7. (a)~(c) NF, CoFeNiZnP-MOF,CoFeNiZn-MOF电极在1.12~1.22 V, 10~60 mV s−1下的循环伏安图--4. 结论
References
Jiao, L., Wang, Y., Jiang, H. and Xu, Q. (2017) Metal-Organic Frameworks as Platforms for Catalytic Applications. Advanced Materials, 30, Article ID: 1703663. >https://doi.org/10.1002/adma.201703663
Saha, J., Verma, S., Ball, R., Subramaniam, C. and Murugavel, R. (2019) Compositional Control as the Key for Achieving Highly Efficient OER Electrocatalysis with Cobalt Phosphates Decorated Nanocarbon Florets. Small, 16, Article ID: 1903334. >https://doi.org/10.1002/smll.201903334
Zhou, Y., Abazari, R., Chen, J., Tahir, M., Kumar, A., Ikreedeegh, R.R., et al. (2022) Bimetallic Metal-Organic Frameworks and MOF-Derived Composites: Recent Progress on Electro-and Photoelectrocatalytic Applications. Coordination Chemistry Reviews, 451, 214264. >https://doi.org/10.1016/j.ccr.2021.214264
Wang, Z.H., Wang, X.F., Tan, Z. and Song, X.Z. (2021) Polyoxometalate/Metal-Organic Framework Hybrids and Their Derivatives for Hydrogen and Oxygen Evolution Electrocatalysis. Materials Today Energy, 19, Article ID: 100618. >https://doi.org/10.1016/j.mtener.2020.100618
Liu, D., Xu, H., Wang, C., Shang, H., Yu, R., Wang, Y., et al. (2021) 3D Porous Ru-Doped Nico-MOF Hollow Nanospheres for Boosting Oxygen Evolution Reaction Electrocatalysis. Inorganic Chemistry, 60, 5882-5889. >https://doi.org/10.1021/acs.inorgchem.1c00295
Duan, C., Ni, Y., Yang, X., Huang, J., Shen, Y., Gu, X., et al. (2024) Electrocatalytic Hydrogen Evolution of Mof-Derived Materials Based on Conjugated or Unconjugated Ligands. CrystEngComm, 26, 370-380. >https://doi.org/10.1039/d3ce00829k
Das, D., Santra, S. and Nanda, K.K. (2018) In Situ Fabrication of a Nickel/Molybdenum Carbide-Anchored N-Doped Graphene/CNT Hybrid: An Efficient (Pre)Catalyst for OER and Her. ACS Applied Materials&Interfaces, 10, 35025-35038. >https://doi.org/10.1021/acsami.8b09941
Li, Z., Gao, R., Feng, M., Deng, Y., Xiao, D., Zheng, Y., et al. (2021) Modulating Metal-Organic Frameworks as Advanced Oxygen Electrocatalysts. Advanced Energy Materials, 11, Article ID: 2003291. >https://doi.org/10.1002/aenm.202003291
Faustini, M., Nicole, L., Ruiz‐Hitzky, E. and Sanchez, C. (2018) History of Organic-Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. Advanced Functional Materials, 28, Article ID: 1704158. >https://doi.org/10.1002/adfm.201704158
He, M., Jia, J., Sun, Q. and Zhang, W. (2020) Hollow N‐doped Carbon Sphere Synthesized by MOF as Superior Oxygen Electrocatalyst for Li‐O
2Batteries. International Journal of Energy Research, 45, 7120-7128. >https://doi.org/10.1002/er.6297
Xu, W., Xie, W. and Wang, Y. (2017) Co
3O
4–x-Carbon@Fe
2–yCo
yO
3Heterostructural Hollow Polyhedrons for the Oxygen Evolution Reaction. ACS Applied Materials&Interfaces, 9, 28642-28649. >https://doi.org/10.1021/acsami.7b09213
Reddy, B.P., Mallikarjuna, K., Kumar, M., Sekhar, M.C., Suh, Y. and Park, S. (2021) Highly Porous Metal Organic Framework Derived NiO Hollow Spheres and Flowers for Oxygen Evolution Reaction and Supercapacitors. Ceramics International, 47, 3312-3321. >https://doi.org/10.1016/j.ceramint.2020.09.172
Qu, H., Ma, Y., Gou, Z., Li, B., Liu, Y., Zhang, Z., et al. (2020) Ni
2P/C Nanosheets Derived from Oriented Growth Ni-MOF on Nickel Foam for Enhanced Electrocatalytic Hydrogen Evolution. Journal of Colloid and Interface Science, 572, 83-90. >https://doi.org/10.1016/j.jcis.2020.03.068
Wu, C., Geng, P., Zhang, G., Li, X. and Pang, H. (2023) Synthesis of Conductive MOFs and Their Electrochemical Application. Small, 20, Article ID: 2308264. >https://doi.org/10.1002/smll.202308264
Li, C., Zhang, H., Liu, M., Lang, F., Pang, J. and Bu, X. (2023) Recent Progress in Metal-Organic Frameworks (MOFs) for Electrocatalysis. Industrial Chemistry&Materials, 1, 9-38. >https://doi.org/10.1039/d2im00063f
Wang, J., Zhang, M., Yang, G., Song, W., Zhong, W., Wang, X., et al. (2021) Heterogeneous Bimetallic Mo‐NiP
x/NiS
yas a Highly Efficient Electrocatalyst for Robust Overall Water Splitting. Advanced Functional Materials, 31, Article ID: 2101532. >https://doi.org/10.1002/adfm.202101532