Figure 2. (a) n-EC-STM shows the change of catalytic activity on the Pd (1 1 1) crystal plane during HER process. (b) Histogram of signal derivatives in Figure a to compare performance differences. (c) n-EC-STM shows the change of catalytic activity on the Pd (1 0 0) crystal plane during HER process. (d) Histogram of signal derivatives in the figure to compare performance differences [8]--图2. (a) n-EC-STM显示在HER过程中Pd (1 1 1)晶面上的催化活性变化。(b) a图中的信号导数直方图,以比较性能差异。(c) n-EC-STM显示在HER过程中Pd (1 0 0)晶面上的催化活性变化。(d) 图中的信号导数直方图,以比较性能差异[8]--3.2. 过渡金属镍基电催化剂
Figure 4. The synthesis route of Co@N-CS/N-HCP@CC electrocatalyst is obtained by growing and carbonizing Co-ZIF on carbon cloth [20]--图4. 在碳布上生长Co-ZIF并且碳化,从而获得Co@N-CS/N-HCP@CC电催化剂的合成路线[20]--3.4. MOF电催化剂
Figure 5. Comparison of the required voltage at 10 mA cm−2 for NiFe-BTC//G with other state-of-the-art MOF-based electrocatalysts [26]--图5. NiFe-BTC//G与其他最先进的MOF基电催化剂在10 mA cm−2下所需电压的比较[26]--3.5. 其他过渡金属基电催化剂Figure 6. (a) Composite flow chart for MoNi@NF. (b)~(d) SEM images of NiMoO-precursor, NiMoO4@NF, MoNi@NF. (e)~(g) Vacuum structure of NiMoO-precursor, NiMoO4@NF, MoNi@NF nanorods. HRTEM image of (h)~(i) MoNi@NF. (j) EDS image of MoNi@NF--图6. (a) MoNi@NF的合成流程图。(b)~(d) NiMoO-precursor、NiMoO4@NF、MoNi@NF的SEM图像。(e)~(g) NiMoO-precursor、NiMoO4@NF、MoNi@NF纳米棒的真空结构。(h)~(i) MoNi@NF的HRTEM图像。(j) MoNi@NF的EDS图像--
References
Chandrasekaran, S., Yao, L., Deng, L., Bowen, C., Zhang, Y., Chen, S., et al. (2019) Recent Advances in Metal Sulfides: From Controlled Fabrication to Electrocatalytic, Photocatalytic and Photoelectrochemical Water Splitting and Beyond. Chemical Society Reviews, 48, 4178-4280. >https://doi.org/10.1039/c8cs00664d
Guo, L., Yu, Q., Zhai, X., Chi, J., Cui, T., Zhang, Y., et al. (2022) Reduction-Induced Interface Reconstruction to Fabricate MoNi
4-Based Hollow Nanorods for Hydrazine Oxidation Assisted Energy-Saving Hydrogen Production in Seawater. Nano Research, 15, 8846-8856. >https://doi.org/10.1007/s12274-022-4614-x
Zhou, L., Yang, C., Zhu, W., Li, R., Pang, X., Zhen, Y., et al. (2022) Boosting Alkaline Hydrogen Evolution Reaction via an Unexpected Dynamic Evolution of Molybdenum and Selenium on MoSe
2Electrode. Advanced Energy Materials, 12, Article ID: 2202367. >https://doi.org/10.1002/aenm.202202367
Wang, M., Saad, A., Li, X., Peng, T., Zhang, Q., Kumar, M., et al. (2021) Solid-State Synthesis of Single-Phase Nickel Monophosphosulfide for the Oxygen Evolution Reaction. Dalton Transactions, 50, 12870-12878. >https://doi.org/10.1039/d1dt02343h
Wang, T., Wang, T., Chou, W., Wu, L. and Lin, S. (2021) First-principles Investigation of the Hydrogen Evolution Reaction of Transition Metal Phosphides CrP, MnP, FeP, CoP, and NiP. Physical Chemistry Chemical Physics, 23, 2305-2312. >https://doi.org/10.1039/d0cp04789a
Zheng, H., Wang, S., Liu, S., Wu, J., Guan, J., Li, Q., et al. (2023) The Heterointerface between Fe
1/NC and Selenides Boosts Reversible Oxygen Electrocatalysis. Advanced Functional Materials, 33, Article ID: 2300815. >https://doi.org/10.1002/adfm.202300815
Hansen, J.N., Prats, H., Toudahl, K.K., Mørch Secher, N., Chan, K., Kibsgaard, J., et al. (2021) Is There Anything Better than Pt for Her? ACS Energy Letters, 6, 1175-1180. >https://doi.org/10.1021/acsenergylett.1c00246
Schmidt, T.O., Ngoipala, A., Arevalo, R.L., Watzele, S.A., Lipin, R., Kluge, R.M., et al. (2022) Elucidation of Structure-Activity Relations in Proton Electroreduction at Pd Surfaces: Theoretical and Experimental Study. Small, 18, Article ID: 2202410. >https://doi.org/10.1002/smll.202202410
Xu, L., Papanikolaou, K.G., Lechner, B.A.J., Je, L., Somorjai, G.A., Salmeron, M., et al. (2023) Formation of Active Sites on Transition Metals through Reaction-Driven Migration of Surface Atoms. Science, 380, 70-76. >https://doi.org/10.1126/science.add0089
Cui, Y., Zhang, C., Li, Y., Du, Z., Wang, C., Yu, S., et al. (2023) Active-Site-Enriched Dendritic Crystal Co/Fe-Doped Ni
3S
2Electrocatalysts for Efficient Oxygen Evolution Reaction. Dalton Transactions, 52, 8747-8755. >https://doi.org/10.1039/d3dt01071f
Bai, J., Wang, Y., Wang, Y., Zhang, T., Dong, G. and Geng, D. (2022) Self‐Reconstruction‐Induced C‐CoSe
2Coupled with Co(OH)
2from Co
0.85Se for Efficient her Electrocatalysis in Alkaline Media. International Journal of Energy Research, 46, 12476-12484. >https://doi.org/10.1002/er.8013
Cheng, C., Lin, T., Ting, Y., Lin, S., Choi, Y. and Lu, S. (2023) Metal-Organic Frameworks Stabilized Mo and W Binary Single-Atom Catalysts as High Performance Bifunctional Electrocatalysts for Water Electrolysis. Nano Energy, 112, Article ID: 108450. >https://doi.org/10.1016/j.nanoen.2023.108450
Luo, Y., Zhang, Z., Yang, F., Li, J., Liu, Z., Ren, W., et al. (2021) Stabilized Hydroxide-Mediated Nickel-Based Electrocatalysts for High-Current-Density Hydrogen Evolution in Alkaline Media. Energy&Environmental Science, 14, 4610-4619. >https://doi.org/10.1039/d1ee01487k
Chen, B., Kim, D., Zhang, Z., Lee, M. and Yong, K. (2021) MOF-Derived NiCoZnP Nanoclusters Anchored on Hierarchical N-Doped Carbon Nanosheets Array as Bifunctional Electrocatalysts for Overall Water Splitting. Chemical Engineering Journal, 422, Article ID: 130533. >https://doi.org/10.1016/j.cej.2021.130533
Zhang, C., Du, X., Zhang, X., Wang, Y. and Hu, T. (2023) In Situ Construction of WNiM-WNi LDH (M = Se, S, or P) with Heterostructure as Highly Efficient Electrocatalyst for Overall Water Splitting and Urea Oxidation Reaction. Dalton Transactions, 52, 6052-6060. >https://doi.org/10.1039/d3dt00065f
Dou, X., Yuan, D., Liang, X., Song, K., Hu, R., Zhang, L., et al. (2023) Synergy between Mo Dopants and Ni Vacancies in NiOOH for Enhanced Oxygen Evolution Reaction. Chemical Engineering Journal, 468, Article ID: 143715. >https://doi.org/10.1016/j.cej.2023.143715
Nie, Z., Zhang, L., Du, Z., Hu, J., Huang, X., Zhou, C., et al. (2023) Vacancy and Doping Engineering of Ni-Based Charge-Buffer Electrode for Highly-Efficient Membrane-Free and Decoupled Hydrogen/oxygen Evolution. Journal of Colloid and Interface Science, 642, 714-723. >https://doi.org/10.1016/j.jcis.2023.04.001
Chen, Z., Ha, Y., Jia, H., Yan, X., Chen, M., Liu, M., et al. (2019) Oriented Transformation of Co‐LDH into 2D/3D ZIF‐67 to Achieve Co-N-C Hybrids for Efficient Overall Water Splitting. Advanced Energy Materials, 9, Article ID: 1803918. >https://doi.org/10.1002/aenm.201803918
Tian, L., Chen, Z., Wang, T., Cao, M., Lu, X., Cheng, W., et al. (2023) Mo Doping and Se Vacancy Engineering for Boosting Electrocatalytic Water Oxidation by Regulating the Electronic Structure of Self-Supported Co
9Se
8@NiSe. Nanoscale, 15, 259-265. >https://doi.org/10.1039/d2nr05410h
Duan, C., Tang, C., Yu, S., Li, L., Li, J. and Zhou, Y. (2023) Efficient Electrocatalytic Desulfuration and Synchronous Hydrogen Evolution from H
2S via Anti-Sulfuretted Nise Nanowire Array Catalyst. Applied Catalysis B: Environmental, 324, Article ID: 122255. >https://doi.org/10.1016/j.apcatb.2022.122255
Li, C., Zhang, H., Liu, M., Lang, F., Pang, J. and Bu, X. (2023) Recent Progress in Metal-organic Frameworks (MOFs) for Electrocatalysis. Industrial Chemistry&Materials, 1, 9-38. >https://doi.org/10.1039/d2im00063f
Radwan, A., Jin, H., He, D. and Mu, S. (2021) Design Engineering, Synthesis Protocols, and Energy Applications of Mof-Derived Electrocatalysts. Nano-Micro Letters, 13, Article No. 132. >https://doi.org/10.1007/s40820-021-00656-w
玄翠娟, 王杰, 朱静, 等. 基于金属有机框架化合物纳米电催化剂的研究进展[J]. 物理化学学报, 2017, 33(1): 149-164.
Du, J., Li, F. and Sun, L. (2021) Metal-Organic Frameworks and Their Derivatives as Electrocatalysts for the Oxygen Evolution Reaction. Chemical Society Reviews, 50, 2663-2695. >https://doi.org/10.1039/d0cs01191f
He, X. (2023) Fundamental Perspectives on the Electrochemical Water Applications of Metal-Organic Frameworks. Nano-Micro Letters, 15, Article No. 148. >https://doi.org/10.1007/s40820-023-01124-3
Lyu, S., Guo, C., Wang, J., Li, Z., Yang, B., Lei, L., et al. (2022) Exceptional Catalytic Activity of Oxygen Evolution Reaction via Two-Dimensional Graphene Multilayer Confined Metal-Organic Frameworks. Nature Communications, 13, Article No. 6171. >https://doi.org/10.1038/s41467-022-33847-z
Zheng, X., Sun, A., Qiu, Y., Wang, Z., Xu, J. and Liu, J. (2023) Controllable Atoms Implantation for Inducing High Valency Nickel Towards Optimizing Electronic Structure for Enhanced Overall Water Splitting. Journal of Colloid and Interface Science, 650, 1966-1973. >https://doi.org/10.1016/j.jcis.2023.07.131
Nie, F., Li, Z., Dai, X., Yin, X., Gan, Y., Yang, Z., et al. (2022) Interfacial Electronic Modulation on Heterostructured NiSe@CoFe LDH Nanoarrays for Enhancing Oxygen Evolution Reaction and Water Splitting by Facilitating the Deprotonation of OH to O. Chemical Engineering Journal, 431, Article ID: 134080. >https://doi.org/10.1016/j.cej.2021.134080
Li, S., Ren, P., Yang, C., Liu, X., Yin, Z., Li, W., et al. (2018) Fe
5C
2Nanoparticles as Low-Cost HER Electrocatalyst: The Importance of Co Substitution. Science Bulletin, 63, 1358-1363. >https://doi.org/10.1016/j.scib.2018.09.016
Gu, Y., Wang, X., Humayun, M., Li, L., Sun, H., Xu, X., et al. (2022) Spin Regulation on (Co, Ni)Se
2/C@FeOOH Hollow Nanocage Accelerates Water Oxidation. Chinese Journal of Catalysis, 43, 839-850. >https://doi.org/10.1016/s1872-2067(21)63922-0