hjmce Hans Journal of Medicinal Chemistry 2331-8287 2331-8295 beplay体育官网网页版等您来挑战! 10.12677/hjmce.2024.123025 hjmce-93960 Articles 医药卫生, 化学与材料 AGGF1-EPCs对小鼠急性肾损伤保护作用的研究
The Protective Effect Analysis of AGGF1 Primed EPCs on Acute Kidney Injury in Mice
1 2 牧苏婉 1 杨惠元 1 韦妙灵 1 韦柳青 1 1 桂林医学院智能医学与生物技术学院,广西 桂林 桂林医学院广西脑与认知神经科学重点实验室,广西 桂林 30 07 2024 12 03 220 226 24 6 :2024 13 6 :2024 13 7 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 目的:探究AGGF1预处理的EPCs对肾IRI的治疗作用。方法:用淋巴细胞分离液(histopaque-1083)离心分离出单个核细胞层,分离的单个核细胞(Bone marrow mononuclear cells, MNCs)进行鉴定(Dil-ac-LDL和FITC-UEA-1染色)后用分离纯化的AGGF1蛋白预处理(0.5 μg/mL,洗涤后尾静脉注射) 12 h,之后进行小鼠细胞治疗。小鼠分Sham组、生理盐水组(Saline组,I/R小鼠)、EPCs组(移植EPCs,I/R小鼠)、AGGF1-EPCs组(移植AGGF1蛋白预处理的EPCs,I/R小鼠)共4组,为了评估AGGF1预处理的EPCs植入疗法对肾IRI的影响,我们实施了免疫荧光实验、免疫组化和ELISA等实验。结果:实验结果显示,MNCs来源的EPCs呈现Dil-ac-LDL和FITC-UEA-1阳性。ELISA实验结果显示,AGGF1-EPCs组小鼠的尿素氮水平(BUN),肌酐(Creatine)与急性肾损伤标志物NGAL水平均较Saline组、EPCs组显著下降,同时,免疫组化分析也显示AGGF1-EPCs组小鼠肾脏的F4/80较Saline组、EPCs组显著下降。此外,血清IL-1β,TNF-α的检测结果也显示,炎症因子(IL-1β, TNF-α)在AGGF1-EPCs组小鼠的中表达最低。结论:AGGF1预处理的EPCs植入疗法可以显著降低缺血再灌注引起的急性肾损伤与炎症反应,对IRI具有良好的改善保护作用,这为未来肾IR的临床干预提供了一种新的潜在治疗方案。
Objective: To explore the therapeutic effect of AGGF1 primed-EPCs on renal ischemia-reperfusion injury (IRI). Methods: We centrifuge and separate the bone marrow mononuclear cells (MNCs) using histopaque-1083, and identify the MNCs with Dil-ac-LDL and FITC-UEA-1 staining. After pretreatment with purified AGGF1 protein (0.5 μg/mL), EPCs were washed and injected into the C57BL/6J mice via tail vein. The mice were divided into four groups: Sham group, Saline group (I/R mice), EPCs group (transplanted EPCs, I/R mice), and AGGF1-EPCs group (EPCs pretreated with AGGF1 protein, I/R mice). To evaluate the effect of EPCs implantation on renal IRI, we carried out western blot, ELISA, and immunohistochemistry experiments. Results: Our results showed that EPCs derived from MNCs exhibited Dil-ac-LDL and FITC-UEA-1 positive. The ELISA results showed that the levels of urea nitrogen (BUN), creatinine and acute kidney injury marker NGAL in the AGGF1-EPCs group mice were significantly lower than those in the Saline group and EPCs group. At the same time, immunohistochemical analysis also showed that the NGAL levels and F4/80 in the kidneys of AGGF1-EPCs group mice were significantly lower than those in the Saline group and EPCs group. In addition, we also observed that the inflammatory factors IL-1β, TNF-α were significantly reduced in the AGGF1-EPCs group of mice. Conclusion: The implantation therapy of AGGF1 primed-EPCs significantly reduce acute renal injury and inflammatory response caused by ischemia-reperfusion. This provides a new potential treatment for clinical intervention of renal IR.
AGGF1,内皮组细胞,急性肾损伤,炎症
AGGF1
Endothelial Cells Acute Kidney Injury Inflammation
1. 引言

缺血再灌注(Ischemia-Reperfusion, IR)、器官移植、出血、脱水、休克和脓毒症均可导致急性肾损伤(Acute Kidney Injury, AKI),AKI具有发病率高和死亡率高的特点 [1] [2] 。在严重的情况下,AKI可发展成慢性肾脏疾病甚至终末期肾病,伴有进行性纤维化和器官功能丧失 [3] - [5] 。肾脏IR可发生在心脏手术或肾移植期间,严重损害肾脏功能 [6] ,肾IR通过引起不同程度的氧化应激、炎症、坏死和凋亡来损害组织功能和完整性 [1] [7] 。肾脏发生IR时,肾脏血管内皮细胞受损 [7] 。因此,对损伤的内皮细胞进行修复是解决肾缺血再灌损伤(Ischemia-Reperfusion, IRI)的重要问题。

内皮祖细胞(Endothelial Progenitor Cells, EPCs)是内皮细胞的先祖细胞,具有修复受损内皮细胞的能力 [8] 。当机体处于风险条件(如遗传易感性、吸烟、高血压)下时,循环系统内的EPCs的数量会减少,EPCs的迁移能力均会减弱 [9] 。此外,大量研究表明也表明EPCs植入是缺血性血管疾病治疗的有效途径 [8] [10]

AGGF1基因是在研究人先天性骨肥大性静脉曲张综合征(Klippel-Trénaunay Syndrome, KTS)时发现的血管生成因子,具有类似VEGFA的促血管新生功能 [11] 。AGGF1蛋白可以显著增加EPCs在治疗糖尿病后肢缺血小鼠中的血流恢复能力和血管新生能力,其通过调控pAkt/Fyn/Nrf2信号通路拮抗糖尿病条件下EPCs功能失常 [10] 。此外,AGGF1还具有抑制牙髓、肌肉与神经系统炎症的功能 [12] - [14] 。因此,我们推测AGGF1预处理的EPCs可能具有通过修复血管内皮治疗肾IRI的潜能。

2. 材料与方法 2.1. 内皮祖细胞的分离鉴定

首先将C57BL/6J小鼠过量麻醉剂处死,用体积分数75%医用乙醇浸泡除菌后在超净台内剔除肌肉,取出股骨,用PBS冲出骨髓。将骨髓与PBS混合液吹打制成单细胞悬液后用淋巴细胞分离液(histopaque-1083, Sigma-Aldrich)离心分离出单个核细胞层。分离的单个核细胞(Bone marrow mononuclear cells, MNCs)用LONZA EGM-2 bullet kit培养基培养。单个核细胞与DiI标记的乙酰化低密度脂蛋白(DiI-acLDL, Molecular Probes, 5 g/mL)和FITC标记的凝集素Ⅰ (FITC-UEA-I, Molecular Probes, 10 μg/mL)孵育后通过荧光显微镜检查FITC-凝集素Ⅰ和DiI-乙酰化低密度脂蛋白荧光效率,双染色阳性的细胞认为是正在分化的EPCs。

2.2. 小鼠急性肾损伤模型的制备

C57BL/6J小鼠首先用4%水合氯醛腹腔注射麻醉,于背部腹中线左侧中部将皮肤切约1 cm长的纵行切口,钝性分离肌肉后暴露出左侧肾脏,游离出左侧肾动脉,用动脉夹夹闭左侧肾动脉(由红色变成黑红色),夹闭50 min后开放,肾脏颜色逐渐恢复,说明造模型成功。手术结束后将动物至于干净饲养笼内,保证足够食物、饮水。实验过程中小鼠随机选择,手术严格进行无菌操作。

2.3. 内皮祖细胞的植入

急性肾缺血再灌注损伤1小时后进行细胞移植。移植EPCs (1 × 106)采用尾静脉注射法。小鼠分Sham组:只暴露肾脏,不作其他处理;I/R小鼠分生理盐水组(Saline组)、EPCs组(移植EPCs)、AGGF1-EPCs组(移植AGGF1蛋白预处理的EPCs,EPCs用纯化AGGF1蛋白预处理12 h,0.5 μg/mL,洗涤后尾静脉注射)。

2.4. 酶联免疫吸附试验(ELISA)

血尿素氮(BUN)、肌酐(Creatine)、白细胞介素-1β (IL-1β)、肿瘤坏死因子α (TNFα)和中性粒细胞明胶酶相关脂质运载蛋白(NGAL)的ELISA试剂盒由南京建诚生物工程研究所“中国南京”提供。实验按照制造商的说明书进行。

2.5. 免疫组化分析

C57BL/6J小鼠到达实验节点后,肾脏经过4%多聚甲醛固定后进行石蜡切片操作,厚度为4~6 μm,之后进行免疫组化实验。免疫组化简要实验步骤如下:1) 石蜡切片脱蜡至水。2) 抗原修。3) 阻断内源性过氧化物酶。4) 封闭。5) 一抗孵育。6) 二抗孵育。7) DAB 显色。8) 复染细胞核。9) 脱水封片。10) 显微镜镜检,图像采集分析。

2.6. 数据分析

所有数据采用平均数 ± 标准差(mean ± SD)表示。大于两组的数据之间的比较,使用ANOVA进行分析。P值小于0.05即为有显著性差异(*P < 0.05)。P值小于0.01即为有极显著性差异(**P < 0.01)。

3. 结果与分析 3.1. 内皮祖细胞的分离鉴定

为初步探究AGGF1预处理的EPCs对肾IRI的治疗效果。我们首先在体外分离得到了小鼠骨髓源EPCs。分离的EPCs培养至4天时,有圆形和纺锤形细胞出现贴壁生长( 图1(a) ),当培养至7天时,可以观察到有铺路石样细胞和细长的细胞大量生长,如( 图1(a) )所示。内皮祖细胞具有摄取Dil-ac-LDL和FITC-UEA-1的功能 [10] ,因此,我们将分离的EPCs进行了FITC-UEA-1和FITC-UEA-1鉴定,正在分化的EPCs即可吞噬Dil-ac-LDL又可结合FITC-UEA-1,在荧光显微镜下表现为黄色的荧光(红绿重叠)。本文中,我们对分离的EPCs进行了双荧光染色,结果显示,EPCs可摄取Dil-ac-LDL,显示红色荧光,此外,EPCs也可结合FITC-UEA-1,显示绿色荧光,双染色阳性细胞则显示黄色荧光,为正在分化的内皮祖细胞( 图1(b) )。免疫荧光结果也显示分离的EPCs呈CD31阳性( 图1(c) )。以上结果表明我们成功从体外分离得到了EPCs细胞群。

Figure 1. Isolation and identification of EPCs. (a) Morphology of C57BL/6J-derived MNCs (1 day, 4 days, 7 days), Scale bar = 50 µm. (b) Representative images of Dil-acLDL (red) and FITC-UEA-1 (green) identification. Blue, Hoechst staining of cell nuclei, Scale bar = 50 µm. (c) Representative images of CD31 (red) immunofluorescence identification. Blue, DAPI staining of cell nuclei, Scale bar = 50 µm--图1. EPCs的分离鉴定。(a) C57BL/6J来源MNCs的形态(1天,4天,7天),标尺 = 50 µm。(b) Dil-acLDL (红色)和FITC-UEA-1 (绿色)鉴定的代表性图片。蓝色,细胞核Hoechst染色,标尺 = 50 µm。(c) CD31 (红色)免疫荧光鉴定的代表性图片。蓝色,细胞核DAPI染色,标尺 = 50 µm--
3.2. AGGF1预处理的EPCs植入可以有效改善肾IRI

接下来,我们对IR模型小鼠进行了EPCs植入(AGGF1预处理)治疗,以探究基于AGGF1预处理的EPCs疗法对肾IRI的治疗效果(AGGF1-EPCs)。我们首先对各组小鼠血液中尿素氮水平(BUN),肌酐(Creatine)与急性肾损伤标志物NGAL水平进行了分析,结果显示,AGGF1-EPCs组小鼠的BUN,Creatine和NGAL水平较Saline组均显著下调( 图2(a)~(c)) ,这暗示AGGF1预处理的EPCs植入疗法对AKI引起的肾功能损伤具有保护作用。此外,炎症标志F4/80蛋白染色结果显示,EPCs + AGGF1组小鼠肾脏中F4/80的信号水平显著降低于Saline组和EPCs组小鼠( 图2(d) 图2(e) )。为进一步探究AGGF1-EPCs对炎症反应的影响,我们对各组小鼠血液中IL-1β与TNF-α水平也进行了检测分析,结果显示,IL-1β与TNF-α在Saline组显著上升,EPCs组和AGGF1-EPCs组小鼠血液中IL-1β与TNF-α水平均显著下降( 图2(f) 图2(g) )。以上结果表明,AGGF1预处理的EPCs植入疗法可以显著降低缺血再灌注引起的肾功能损伤与炎症反应,对IRI具有良好的改善保护作用。

Figure 2. Effects of AGGF1-pretreated EPCs implantation on renal function and histopathological changes (48 hours after IR). (a)~(c) Analysis of serum urea nitrogen (BUN), creatinine (Creatine) and NGAL levels in mice in different groups. ((d) and (e)) Immunohistochemical analysis of renal tissues in mice in different groups (HE staining, F4/80), scale bar = 50 µm. ((f) and (g)) Analysis of serum TNFα and IL-1β levels in mice in different groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001--图2. AGGF1预处理的EPCs植入对肾脏功能和组织病理学变化影响(IR后48小时)。(a)~(c) 不同组小鼠血清尿素氮水平(BUN),肌酐(Creatine)与NGAL水平分析。((d)和(e))不同组小鼠肾脏组织的免疫组化分析(HE染色,F4/80),标尺 = 50 µm。((f)和(g))不同组小鼠血清TNFα与IL-1β水平分析。*P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001--
4. 讨论

AKI是一个极具危险性的临床问题,死亡率高、发病率高,严重危害人类健康 [15] [16] 。EPCs植入治疗已经被证实在缺血性血管疾病治疗的治疗中十分有效 [8] [10] [17] 。我们首先从小鼠骨髓中分离了MNCs,并对其进行了鉴定,基于Dil-ac-LDL、FITC-UEA-1和CD31免疫荧光的鉴定结果显示,分离的MNCs 90%以上显示Dil-ac-LDL、FITC-UEA-1和CD31阳性,这与已有的关于内皮祖细胞特征的描述报道相符 [10] 。EPCs植入治疗已经被报道可以有效降低IR发生时的炎症反应 [17] ,BUN与Creatine水平,在我们的研究中,我们也发现EPCs治疗后可以显著改善AKI后的炎症、降低血清尿素氮水平(BUN)与肌酐水平。此外,AGGF1蛋白预处理EPCs可以有效的增强EPCs疗法对肾IR的保护作用(AGGF1-EPCs组Vs EPCs组)。在糖尿病小鼠的后肢缺血模型中,AGGF1蛋白预处理EPCs可以有效改善后肢缺血后的血流恢复与运动功能 [10] 。这些结果表明,在肾缺血再灌注损伤与糖尿病条件下,AGGF1均具有抑制不利应激引起损的伤作用。

尽管本文对AGGF1预处理的EPCs植入是否可以有效改善肾IRI进行了初步探究,但仍有一些问题需要后续研究阐明。比如AGGF1-EPCs植入疗法是通过何种信号通路改善IRI,在IR条件下,AGGF1通过何种信号通路调节EPCs功能。此外,随着时间的推移,AKI可以引起慢性的肾脏损伤,如纤维化病变 [1] 。因此,AGGF1-EPCs植入疗法是否对AKI后慢性肾损伤具有保护作用也需要后期的继续探究。

综上所述,我们初步探究了AGGF1蛋白预处理的EPCs疗法对肾IRI的治疗效果,结果显示AGGF1-EPCs植入疗法可以显著降低IR时的BUN,Creatine与炎症反应,这暗示AGGF1-EPCs细胞疗法将为肾缺血再灌注损伤的治疗提供新的可能方案。

基金项目

广西科技计划项目(2019AC20357)、国家自然科学基金(32260166)、广西脑与认知神经科学重点实验室开放课题(GKLBCN-202301-03)、大学生创新训练项目(202210601046, 202310601047)。

NOTES

*通讯作者。

References Li, C., Zheng, Z., Xie, Y., Zhu, N., Bao, J., Yu, Q., et al. (2020) Protective Effect of Taraxasterol on Ischemia/Reperfusion-Induced Acute Kidney Injury via Inhibition of Oxidative Stress, Inflammation, and Apoptosis. International Immunopharmacology, 89, Article ID: 107169. >https://doi.org/10.1016/j.intimp.2020.107169 Zhang, J., Shen, R., Lin, H., Pan, J., Feng, X., Lin, L., et al. (2022) Effects of Contralateral Nephrectomy Timing and Ischemic Conditions on Kidney Fibrosis after Unilateral Kidney Ischemia-Reperfusion Injury. Renal Failure, 44, 1569-1585. >https://doi.org/10.1080/0886022x.2022.2126790 Lameire, N.H., Bagga, A., Cruz, D., De Maeseneer, J., Endre, Z., Kellum, J.A., et al. (2013) Acute Kidney Injury: An Increasing Global Concern. The Lancet, 382, 170-179. >https://doi.org/10.1016/s0140-6736(13)60647-9 Zhu, Z., Hu, J., Chen, Z., Feng, J., Yang, X., Liang, W., et al. (2022) Transition of Acute Kidney Injury to Chronic Kidney Disease: Role of Metabolic Reprogramming. Metabolism, 131, Article ID: 155194. >https://doi.org/10.1016/j.metabol.2022.155194 Livingston, M.J., Shu, S., Fan, Y., Li, Z., Jiao, Q., Yin, X., et al. (2022) Tubular Cells Produce FGF2 via Autophagy after Acute Kidney Injury Leading to Fibroblast Activation and Renal Fibrosis. Autophagy, 19, 256-277. >https://doi.org/10.1080/15548627.2022.2072054 Nørgård, M.Ø. and Svenningsen, P. (2023) Acute Kidney Injury by Ischemia/reperfusion and Extracellular Vesicles. International Journal of Molecular Sciences, 24, Article 15312. >https://doi.org/10.3390/ijms242015312 Raup-Konsavage, W.M., Wang, Y., Wang, W.W., Feliers, D., Ruan, H. and Reeves, W.B. (2018) Neutrophil Peptidyl Arginine Deiminase-4 Has a Pivotal Role in Ischemia/reperfusion-Induced Acute Kidney Injury. Kidney International, 93, 365-374. >https://doi.org/10.1016/j.kint.2017.08.014 Jiang, C., Li, R., Xiu, C., Ma, X., Hu, H., Wei, L., et al. (2021) Upregulating CXCR7 Accelerates Endothelial Progenitor Cell-Mediated Endothelial Repair by Activating Akt/Keap-1/NrF2 Signaling in Diabetes Mellitus. Stem Cell Research&Therapy, 12, Article No. 264. >https://doi.org/10.1186/s13287-021-02324-7 Medina, R.J., O’Neill, C.L., O’Doherty, T.M., Chambers, S.E.J., Guduric-Fuchs, J., Neisen, J., et al. (2013) Ex Vivo Expansion of Human Outgrowth Endothelial Cells Leads to Il-8-Mediated Replicative Senescence and Impaired Vasoreparative Function. Stem Cells, 31, 1657-1668. >https://doi.org/10.1002/stem.1414 Yao, Y., Li, Y., Song, Q., Hu, C., Xie, W., Xu, C., et al. (2019) Angiogenic Factor Aggf1-Primed Endothelial Progenitor Cells Repair Vascular Defect in Diabetic Mice. Diabetes, 68, 1635-1648. >https://doi.org/10.2337/db18-1178 Da, X., Li, Z., Huang, X., He, Z., Yu, Y., Tian, T., et al. (2023) AGGF1 Therapy Inhibits Thoracic Aortic Aneurysms by Enhancing Integrin α7-Mediated Inhibition of TGF-β1 Maturation and ERK1/2 Signaling. Nature Communications, 14, Article No. 2265. >https://doi.org/10.1038/s41467-023-37809-x Shen, S., Shang, L., Liu, H., Liang, Q., Liang, W. and Ge, S. (2020) AGGF1 Inhibits the Expression of Inflammatory Mediators and Promotes Angiogenesis in Dental Pulp Cells. Clinical Oral Investigations, 25, 581-592. >https://doi.org/10.1007/s00784-020-03498-9 He, Z., Song, Q., Yu, Y., Liu, F., Zhao, J., Un, W., et al. (2023) Protein Therapy of Skeletal Muscle Atrophy and Mechanism by Angiogenic Factor AGGF1. Journal of Cachexia, Sarcopenia and Muscle, 14, 978-991. >https://doi.org/10.1002/jcsm.13179 Wu, X., Zhang, X., Zhao, L. and Jiang, S. (2022) Neuroprotective Effect of AGGF1 against Isoflurane-Induced Cognitive Dysfunction in Aged Rats through Activating the PI3K/AKT Signaling Pathways. Physiology International, 109, 58-69. >https://doi.org/10.1556/2060.2022.00188 Shen, W., Chou, Y., Huang, H., Sheen, J., Hung, S. and Chen, H. (2018) Induced Pluripotent Stem Cell-Derived Endothelial Progenitor Cells Attenuate Ischemic Acute Kidney Injury and Cardiac Dysfunction. Stem Cell Research&Therapy, 9, Article No. 344. >https://doi.org/10.1186/s13287-018-1092-x Yang, L., Wang, B., Guo, F., Huang, R., Liang, Y., Li, L., et al. (2022) FFAR4 Improves the Senescence of Tubular Epithelial Cells by AMPK/SirT3 Signaling in Acute Kidney Injury. Signal Transduction and Targeted Therapy, 7, Article No. 384. >https://doi.org/10.1038/s41392-022-01254-x Jang, H.N., Kim, J.H., Jung, M.H., Tak, T., Jung, J.H., Lee, S., et al. (2022) Human Endothelial Progenitor Cells Protect the Kidney against Ischemia-Reperfusion Injury via the NLRP3 Inflammasome in Mice. International Journal of Molecular Sciences, 23, Article 1546. >https://doi.org/10.3390/ijms23031546
Baidu
map