aam Advances in Applied Mathematics 2324-7991 2324-8009 beplay体育官网网页版等您来挑战! 10.12677/aam.2024.138359 aam-93786 Articles 数学与物理 一类传染病模型解的存在性和迭代算法
Existence and Iterative Algorithms of Solutions for a Class of Epidemic Model
石丽莉 成都纺织高等专科学校,人文与通识教育学院,四川 成都 30 07 2024 13 08 3769 3777 13 7 :2024 7 7 :2024 7 8 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 通过研究非自治传染病SIRS模型解的存在性和建立迭代算法,分析模型的特殊性质,引入特殊性质的函数,将模型转换为积分系统,并构造所需的迭代序列,证明这个序列收敛于模型的解。可以证明,在一定时间内,SIRS模型具有唯一解,解和近似解之间能进行误差估计。该算法克服模型中非线性项可取负值和不满足Lipschitz条件的困难,证明了SIRS模型解存在,且可使用迭代算法求出和进行误差估计。
This paper studies the existence and iterative algorithms of solutions to the SIRS model of non- autonomous infectious diseases. By analyzing the special properties of the model and introducing the function with special properties, the SIRS model is changed to an integral system, and the required iterative sequence is constructed. It is proved that this sequence converges to the solution of the model. It is proved that the SIRS model has a unique solution within a certain period of time, and the error estimations between the exact solution and the approximate solution are established. By overcoming the difficulties that the nonlinear terms in the model may take negative values and do not satisfy the Lipschitz condition, it is proved that the solution of the SIRS model can be obtained by an iterative method, and the error estimation can be performed.
非自治SIRS模型,迭代算法,存在唯一性,误差估计
Non-Autonomous SIRS Model
Iterative Algorithm Existence and Uniqueness Error Estimations
1. 引言

传染病一直是人类的公敌,一些恶性疾病(如COVID-19)的蔓延甚至对国家安全构成世纪威胁。因此,传染病防治已经成为关系人类健康和国计民生的重大问题。有关传染病的研究可以追溯到18世纪60年代,D. Bernouilli通过接种牛痘的统计学数据建立了最早的传染病数学模型。但直到20世纪初,利用数学模型研究传染病的方法才开始真正发展起来。1906年,W. Hamer根据麻疹的爆发情况建立了一个研究麻疹的数学模型。1911年,诺贝尔医学奖获得者R. Ross开创性地建立疟疾传染的数学模型 [1] ,对疟疾在蚊子和人群之间的传播进行了研究,推导出可用于一般传染病的常微分方程,促进了数理流行病学的发展。1927年,A. G. McKendrick和W. Kermack合作针对鼠疫爆发数据进行分析,把某个地区的总人口分为易感者(Susceptible)、感染者(Infected)和移除者(Removed)三个类别,再根据动力学数学的研究方法提出了数理流行病学中的里程碑式模型:SIR模型 [2] 。该模型是传染病模型中最经典、最基本的模型,能适用于绝大多数传染病的研究,具有较精准的生物学背景意义。1957年Bailey出版了《传染病的数学理论》 [3] 一书,成为传染病领域的标志性著作,自此数学模型被广泛用于传染病问题的分析,传染病动力学的建模与研究开始蓬勃发展。

2. 问题描述

近二十年来,受全球性多起传染病事件影响,各国越来越重视传染病的研究和控制,传染病动力学研究得到了迅速发展,大量的数学模型被用于分析传染病问题以及其他领域。SIRS模型由SIR模型经过多次改进推广而来,它在传染病领域中具有重要意义,一直引起众多学者的研究兴趣。这里列举它的一些研究和应用。Attouga等人 [4] 证明了一类统计模型全局正解的存在性和唯一性,并提出了疾病灭绝和持续存在的一些充分条件。Barman和Mishra [5] 在拉普拉斯扩散图上建立了稳定性和Hopf分岔分析。George等人 [6] 研究了离散时间的分岔分析。Wang和Dai [7] 对多组SIR流行病模型进行了动力学分析。Dong等人 [8] 研究了无病平衡和地方病平衡的全局吸引性,Chekroun和Kuniya [9] 研究了Dirichlet边界条件下带扩散的SIR流行病模型的全局阈值动力学。Rajasekar和Pitchaimani [10] 讨论了随机模型的遍历平稳分布和消亡。Gupta [11] 研究了社会限制的时间。Laguzet和Turinici [12] 做了一些成本效益分析。Chao [13] 利用SIRS模型考虑了智慧城市信用风险控制。张等人 [14] 探讨了如何促进承包商的绿色行为。张和潘 [15] 分析了信息的传递机制。

到目前为止,SIRS模型基本上都是围绕自治的情形进行研究,而有关非自治的研究很少,解的迭代算法几乎没有。

非自治SIRS流行病模型表达为如下形式:

{ d S ( t ) d t = r ( t ) S ( t ) ( 1 S ( t ) K ) β ( t ) I ( t ) S ( t ) 1 + a ( t ) I ( t ) + δ ( t ) R ( t ) , S ( 0 ) = S 0 > 0 , d I ( t ) d t = β ( t ) I ( t ) S ( t ) 1 + a ( t ) I ( t ) σ ( t ) I ( t ) , I ( 0 ) = I 0 > 0 , d R ( t ) d t = γ ( t ) I ( t ) τ ( t ) R ( t ) , R ( 0 ) = R 0 0 , (1)

其中 S ( t ) I ( t ) R ( t ) 分别表示 t 时刻的易感人数、感染人数和康复人数。常数 K > 0 ,为环境的承载容量。除了内在增长率 r ( t ) 之外, a ( t ) 是衡量心理影响的饱和因子。 σ ( t ) = μ ( t ) + ϑ ( t ) + γ ( t ) τ ( t ) = μ ( t ) + δ ( t ) β ( t ) , μ ( t ) , ϑ ( t ) 分别为疾病传播率、自然死亡率和死亡率, γ ( t ) , δ ( t ) 分别为疾病在 t 时刻从感染者到康复者、从康复者到易感者的状态转移率。关于自治SIRS模型(1)的更多内容,参见 [10]

本文的目标是证明(1)解的存在性和建立迭代算法,同时给出解的唯一性证明并进行误差估计。由于(1)解是非负的,通常的方法 [16] [17] 无法对其进行研究,因而需要使用特殊的分析技巧,并克服模型中非线性项可取负值和不满足Lipschitz条件的困难。通过对SIRS模型性质的分析,将模型转换为积分系统,引入特殊性质的函数,并构造所需的迭代序列,实现了这一目标。

3. 预备知识

T > 0 C [ 0 , T ] 表示在 [ 0 , T ] 上的所有连续函数, C + [ 0 , T ] = { u : u C [ 0 , T ] , u ( t ) 0 , t [ 0 , T ] }

显然,问题(1)应该在 Ω = { ( S , I , R ) : S , I , R C + [ 0 , T ] , S ( t ) + I ( t ) + R ( t ) K , t [ 0 , T ] } 内考虑。如果 S , I , R Ω \ { 0 } 均有一阶连续导数,且 ( S , I , R ) 满足(1),则称 ( S , I , R ) 为(1)的解。

在本研究中,总是假设

(P1) S 0 + I 0 + R 0 < K

(P2) r ( t ) , a ( t ) , β ( t ) , μ ( t ) , ϑ ( t ) , γ ( t ) , δ ( t ) 均在 [ 0 , ) 连续、有界且取正值。

注1 (a) 在实际情况中, S 0 + I 0 + R 0 远远小于K,因而(P1)通常自动满足。(b) 对自治的情形,所有函数都为常数,(P2)自然满足。

s , u , v , w [ 0 , ) ,记

f ( s , u , v , w ) = r ( s ) u ( 1 u K ) β ( s ) u v 1 + a ( s ) v + δ ( s ) w

g ( s , u , v ) = β ( s ) u v 1 + a ( s ) v σ ( s ) v

h ( s , v , w ) = γ ( s ) v τ ( s ) w

如果 ( S , I , R ) 是(1)的解,将(1)从0到t积分,得到如下积分系统:

{ S ( t ) = 0 t f ( s , S ( s ) , I ( s ) , R ( s ) ) d s + S 0 , I ( t ) = 0 t g ( s , S ( s ) , I ( s ) ) d s + I 0 , R ( t ) = 0 t h ( s , I ( s ) , R ( s ) ) d s + R 0 . (2)

显然, ( S , I , R ) 是(1)的解当且仅当 S , I , R Ω \ { 0 } ( S , I , R ) 满足(2)。因此,只需要建立(2)的非负解的迭代算法,讨论其解的唯一性和误差估计。

命题1 设 0 s < , 0 u , v , w , u * , v * K ,则

| u ( 1 u K ) u * ( 1 u * K ) | | u u * |

| u v 1 + a ( s ) v u * v * 1 + a ( s ) v * | K ( | u u * | + | v v * | )

f ( s , u , v , w ) + g ( s , u , v ) + h ( s , v , w ) ρ K

| f ( s , u , v , w ) | ( ρ + β + δ ) K

| g ( s , u , v ) | ( β + σ ) K

| h ( s , v , w ) | ( γ + τ ) K

其中,

ρ = sup { r ( s ) : s [ 0 , ) } β = sup { β ( s ) : s [ 0 , ) } δ = sup { δ ( s ) : s [ 0 , ) }

σ = sup { σ ( s ) : s [ 0 , ) } γ = sup { γ ( s ) : s [ 0 , ) } τ = sup { τ ( s ) : s [ 0 , ) }

证明 因为 0 v 1 + a v K , 0 u * ( 1 + a v ) ( 1 + a v * ) K , 1 1 u + u * K 1 ,有

| u ( 1 u K ) u * ( 1 u * K ) | = | ( 1 u + u * K ) ( u u * ) | | u u * |

| u v 1 + a ( s ) v u * v * 1 + a ( s ) v * | = | v ( u u * ) 1 + a ( s ) v + u * ( v v * ) ( 1 + a ( s ) v ) ( 1 + a ( s ) v * ) | K | u u * | + K | v v * |

f ( s , u , v , w ) + g ( s , u , v ) + h ( s , v , w ) r ( s ) u + ( γ ( s ) σ ( s ) ) v + ( δ ( s ) τ ( s ) ) w r ( s ) u ρ K

| f ( s , u , v , w ) | r ( s ) u + β ( s ) u v 1 + a ( s ) v + δ ( s ) w r ( s ) u + β ( s ) u + δ ( s ) w ( ρ + β + δ ) K

| g ( s , u , v ) | β ( s ) u v 1 + a ( s ) v + σ ( s ) v β ( s ) u + σ ( s ) v ( β + σ ) K

| h ( s , v , w ) | γ ( s ) v + τ ( s ) w ( γ + τ ) K

容易验证下面命题成立,这里省去了对其的证明。

命题2 设

ψ ( s ) = { K , s > K , s , 0 s K , 0 , s < 0

(i) 对于任何 s R 0 ψ ( s ) K

(ii) 对任意 s 1 , s 2 R | ψ ( s 2 ) ψ ( s 1 ) | | s 2 s 1 |

因为需要建立积分系统(2)非负解的存在性及算法,但它的解不一定满足非负条件,直接研究(2)得不出所需结果。为此,利用函数 ψ 建立下面的定理,这一定理在本研究中起着关键作用。

定理1 令 S , I , R C [ 0 , T ] 满足

{ S ( t ) = 0 t f ( s , ψ [ S ( s ) ] , ψ [ I ( s ) ] , ψ [ R ( s ) ] ) d s + S 0 : = A ( S , I , R ) ( t ) , I ( t ) = 0 t g ( s , ψ [ S ( s ) ] , ψ [ I ( s ) ] ) d s + I 0 : = B ( S , I , R ) ( t ) , R ( t ) = 0 t h ( s , ψ [ I ( s ) ] , ψ [ R ( s ) ] ) d s + R 0 : = C ( S , I , R ) ( t ) . (3)

(i) S , I , R C + [ 0 , T ] \ { 0 }

(ii) 如果 T K ( S 0 + I 0 + R 0 ) ρ K ,则 ( S , I , R ) 是一个非负解。

证明 第一步:如果存在 t 0 ( 0 , T ] 使得 S ( t 0 ) < 0 ,则由 S ( 0 ) = u 0 > 0 知,必存在 c , d ( 0 , T ] 满足

c < d , S ( c ) = 0 , S ( t ) < 0 , t ( c , d ]

ψ [ S ( t ) ] = 0 , t ( c , d ] ,这意味着

d S ( t ) d t = r ( s ) ψ [ S ( t ) ] ( 1 ψ [ S ( t ) ] K ) β ( t ) ψ [ I ( t ) ] ψ [ S ( t ) ] 1 + a ( t ) ψ [ I ( t ) ] + δ ( t ) ψ [ R ( t ) ] = δ ( t ) ψ [ R ( t ) ] 0

t ( c , d ] 。于是, S ( t ) 0 , t ( c , d ] ,矛盾。因此, S ( t ) 0 , t [ 0 , T ] 。类似的讨论表明 I ( t ) 0 R ( t ) 0 , t [ 0 , T ]

如果 S ( t ) 0 ,根据(3),可知 S 0 = 0 ,矛盾。类似的讨论,可知 S , I , R C + [ 0 , T ] \ { 0 }

第二步:如果 T K ( S 0 + I 0 + R 0 ) ρ K ,由(2)和命题1,可知

0 S ( t ) + I ( t ) + R ( t ) = 0 t [ f ( s , ψ [ S ( s ) ] , ψ [ I ( s ) ] , ψ [ R ( s ) ] ) + g ( s , ψ [ S ( s ) ] , ψ [ I ( s ) ] ) + h ( [ s , I ( s ) ] , ψ [ R ( s ) ] ) ] d s + ( S 0 + I 0 + R 0 ) 0 t ρ K d s + ( S 0 + I 0 + R 0 ) ρ K T + ( S 0 + I 0 + R 0 ) K .

这意味着 0 S ( t ) , I ( t ) , R ( t ) K ( t [ 0 , T ] ) 且有

ψ [ S ( t ) ] = S ( t ) , ψ [ I ( t ) ] = I ( t ) , ψ [ R ( t ) ] = R ( t ) , ( t [ 0 , T ] )

因此 ( S , I , R ) 是(2)的非负解。

4. 迭代算法和误差估计

本节建立迭代算法,并证明非负解的唯一性和误差估计。

n 1 ,且

{ S n ( t ) = A ( S n 1 , I n 1 , R n 1 ) ( t ) , I n ( t ) = B ( S n 1 , I n 1 , R n 1 ) ( t ) , R n ( t ) = C ( S n 1 , I n 1 , R n 1 ) ( t ) , (4)

其中, S 0 ( t ) = S 0 , I 0 ( t ) = I 0 , R 0 ( t ) = R 0 , t [ 0 , T ]

m 1 = sup { r ( s ) + K β ( s ) + δ ( s ) : s [ 0 , ) } ,

m 2 = sup { K β ( s ) + σ ( s ) : s [ 0 , ) } ,

m 3 = sup { γ ( s ) + τ ( s ) : s [ 0 , ) } ,

m = m 1 + m 2 + m 3

α n ( t ) = | S n ( t ) S n 1 ( t ) | + | I n ( t ) I n 1 ( t ) | + | R n ( t ) R n 1 ( t ) |

定理2 α n ( t ) K ˜ ( m t ) n 1 ( n 1 ) ! K ˜ ( m T ) n 1 ( n 1 ) ! , t [ 0 , T ] ,其中 K ˜ = ( ρ + 2 β + δ + σ + γ + τ ) K T

证明 由命题2(ii),可得

| ψ [ S n ( t ) ] ψ [ S n 1 ( t ) ] | | S n ( t ) S n 1 ( t ) | ,

| ψ [ I n ( t ) ] ψ [ I n 1 ( t ) ] | | I n ( t ) I n 1 ( t ) | ,

| ψ [ R n ( t ) ] ψ [ R n 1 ( t ) ] | | R n ( t ) R n 1 ( t ) |

这与命题1一起表明

| S n + 1 ( t ) S n ( t ) | = | A ( S n , I n , R n ) ( t ) A ( S n 1 , I n 1 , R n 1 ) ( t ) | 0 t ( r ( s ) | ψ [ S n ( s ) ] ψ [ S n 1 ( s ) ] | + K β ( s ) | ψ [ S n ( s ) ] ψ [ S n 1 ( s ) ] | + K β ( s ) | ψ [ I n ( s ) ] ψ [ I n 1 ( s ) ] | + δ ( s ) | ψ [ R n ( s ) ] ψ [ R n 1 ( s ) ] | ) d s = 0 t [ ( r ( s ) + K β ( s ) ) | ψ [ S n ( s ) ] ψ [ S n 1 ( s ) ] | + K β ( s ) | ψ [ I n ( s ) ] ψ [ I n 1 ( s ) ] | + δ ( s ) | ψ [ R n ( s ) ] ψ [ R n 1 ( s ) ] | ] d s m 1 0 t ( | ψ [ S n ( s ) ] ψ [ S n 1 ( s ) ] | + | ψ [ I n ( s ) ] ψ [ I n 1 ( s ) ] | + | ψ [ R n ( s ) ] ψ [ R n 1 ( s ) ] | ) d s , m 1 0 t ( | S n ( s ) S n 1 ( s ) | + | I n ( s ) S n 1 ( s ) | + | R n ( s ) R n 1 ( s ) | ) d s = m 1 0 t α n ( s ) d s , (5)

| I n + 1 ( t ) I n ( t ) | = | B ( S n , I n , R n ) ( t ) B ( S n 1 , I n 1 , R n 1 ) ( t ) | 0 t ( K β ( s ) | ψ [ S n ( s ) ] ψ [ S n 1 ( s ) ] | + K β ( s ) | ψ [ I n ( s ) ] ψ [ I n 1 ( s ) ] | + σ ( s ) | ψ [ R n ( s ) ] ψ [ R n 1 ( s ) ] | ) d s m 2 0 t ( | ψ [ S n ( s ) ] ψ [ S n 1 ( s ) ] | + | ψ [ I n ( s ) ] ψ [ I n 1 ( s ) ] | + | ψ [ R n ( s ) ] ψ [ R n 1 ( s ) ] | ) d s , m 2 0 t ( | S n ( s ) S n 1 ( s ) | + | I n ( s ) I n 1 ( s ) | + | R n ( s ) R n 1 ( s ) | ) d s = m 2 0 t α n ( s ) d s , (6)

| R n + 1 ( t ) R n ( t ) | = | C ( S n , I n , R n ) ( t ) C ( S n 1 , I n 1 , R n 1 ) ( t ) | 0 t ( γ ( s ) | ψ [ I n ( s ) ] ψ [ I n 1 ( s ) ] | + τ ( s ) | ψ [ R n ( s ) ] ψ [ R n 1 ( s ) ] | ) d s m 3 0 t ( | ψ [ S n ( s ) ] ψ [ S n 1 ( s ) ] | + | ψ [ I n ( s ) ] ψ [ I n 1 ( s ) ] | + | ψ [ R n ( s ) ] ψ [ R n 1 ( s ) ] | ] d s m 3 0 t ( | S n ( s ) S n 1 ( s ) | + | I n ( s ) I n 1 ( s ) | + | R n ( s ) R n 1 ( s ) | ) d s m 3 0 t α n ( s ) d s . (7)

由不等式(5)~(7),可知

α n + 1 ( t ) m 0 t α n ( s ) d s

由命题1,注意到 S 0 ( t ) = S 0 , I 0 ( t ) = I 0 , R 0 ( t ) = R 0 ( t [ 0 , T ] ) ,有

| α 1 ( t ) | = | S 1 ( t ) S 0 ( t ) | + | I 1 ( t ) I 0 ( t ) | + | R 1 ( t ) R 1 ( t ) | 0 T | f ( s , S 0 ( s ) , I 0 ( s ) , R 0 ( s ) ) | d s + 0 T | g ( s , S 0 ( s ) , I 0 ( s ) ) | d s + 0 T | h ( s , I 0 ( s ) , R 0 ( s ) ) | d s 0 T ( ρ + β + δ ) K d s + 0 T ( β + σ ) K d s + 0 T ( γ + τ ) K d s = K ˜ .

通过归纳,并利用 α 1 ( t ) K ˜ ,得到

α n ( t ) K ˜ ( m t ) n 1 ( n 1 ) ! K ˜ ( m T ) n 1 ( n 1 ) ! , t [ 0 , T ]

定理3 设 T K ( S 0 + I 0 + R 0 ) ρ K 。那么(1)有唯一解 S * , I * , R * C + [ 0 , T ] \ { 0 } S * ( t ) = lim n S n ( t ) I * ( t ) = lim n I n ( t ) R * ( t ) = lim n R n ( t ) ,且有

| S * ( t ) S n ( t ) | K ˜ ( e m T e n 1 )

| I * ( t ) I n ( t ) | K ˜ ( e m T e n 1 )

| R * ( t ) R n ( t ) | K ˜ ( e m T e n 1 )

t [ 0 , T ] , n 1 , e n = k = 0 n ( m T ) k k !

证明 第一步:解的存在性。由定理2,有

| S n + p ( t ) S n ( t ) | k = n + 1 n + p | S k ( t ) S k 1 ( t ) | k = n + 1 n + p α k ( t ) K ˜ k = n + 1 n + p ( m T ) k 1 ( k 1 ) ! = K ˜ k = n n + p 1 ( m T ) k k ! , (8)

| I n + p ( t ) I n ( t ) | k = n + 1 n + p | I k ( t ) I k 1 ( t ) | k = n + 1 n + p α k ( t ) K ˜ k = n + 1 n + p ( m T ) k 1 ( k 1 ) ! = K ˜ k = n n + p 1 ( m T ) k k ! , (9)

| R n + p ( t ) R n ( t ) | k = n + 1 n + p | R k ( t ) R k 1 ( t ) | k = n + 1 n + p α k ( t ) K ˜ k = n + 1 n + p ( m T ) k 1 ( k 1 ) ! = K ˜ k = n n + p 1 ( m T ) k k ! 。 (10)

不等式(8)~(10)意味着 { S n ( t ) } , { I n ( t ) } { R n ( t ) } [ 0 , T ] 上一致收敛,极限表示为

S * ( t ) = lim n S n ( t ) , I * ( t ) = lim n I n ( t ) , R * ( t ) = lim n R n ( t ) 。 (11)

在(4)中让 n ,有 S * ( t ) = A ( S * , I * , R * ) ( t ) , I * ( t ) = B ( S * , I * , R * ) ( t ) , R * ( t ) = C ( S * , I * , R * ) ( t )

利用定理1,得到 S * , I * , R * C + [ 0 , T ] \ { 0 } 是(2)的非负解。

第二步:解的唯一性。

S * , I * , R * C + [ 0 , T ] \ { 0 } 为(2)的另一个非负解。下面证明 S * = S * , I * = I * , R * = R *

α n * ( t ) = | S * ( t ) S n ( t ) | + | I * ( t ) I n ( t ) | + | R * ( t ) R n ( t ) | 。将(5)中的 S n + 1 ( t ) A ( S n , I n , R n ) ( t ) 分别替换为 S * ( t ) A ( S * , I * , R * ) ( t ) ,(6)中的 I n + 1 ( t ) B ( S n , I n , R n ) ( t ) 分别替换为 I * ( t ) B ( S * , I * , R * ) ( t ) ( t ) ,(7)中的 R n + 1 ( t ) C ( S n , I n , R n ) ( t ) 分别替换为 R * ( t ) C ( S * , I * , R * ) ( t ) ,通过重复类似的过程,获得以下不等式

α n * ( t ) K ˜ ( m t ) n 1 ( n 1 ) ! K ˜ ( m T ) n 1 ( n 1 ) ! , t [ 0 , T ] 。 (12)

在(12)中让 n ,由(11)可知 S * = S * , I * = I * , R * = R *

第三步:误差估计。

令(8)−(10)中 p ,可以得到 ( t [ 0 , T ] )

| S * ( t ) S n ( t ) | K ˜ k = n ( m T ) k k ! = K ˜ ( e m T e n 1 ) ,

| I * ( t ) I n ( t ) | K ˜ k = n ( m T ) k k ! = K ˜ ( e m T e n 1 ) ,

| R * ( t ) R n ( t ) | K ˜ k = n ( m T ) k k ! = K ˜ ( e m T e n 1 )

5. 结论与备注

本文通过建立迭代算法来求解SIRS流行病模型(1),并证明了非负解的存在唯一性和提供误差估计。如果(1)是自治的,所获得的结果自然是正确的。一般来说,人们总是假设微分方程迭代方法中涉及的非线性项满足Lipschitz条件(如一阶微分方程的Picard迭代)。然而,(1)中涉及的非线性项不满足这个条件。研究(1),通常情况下,人们研究它的积分形式(2)。但是(2)的解不一定满足非负条件。为了克服这个困难,本文创新引入函数 ψ 来构造所需的迭代序列,并且通过定理1保证解是非负的,这正是本文的亮点。

References Ross, R. (1911) Some Quantitative Studies in Epidemiology. Nature, 87, 466-467. >https://doi.org/10.1038/087466a0 Kermack, W.O. and Mckendrick, A.G. (1932) Contributions to the Mathematical Theory of Epidemics II—The Problem of Endemicity. Mathematical Theory of Epidemics, 138, 55-83. >https://doi.org/10.1098/rspa.1932.0171 Bailey, N.T. (1975) The Mathematical Theory of Infectious Diseases and Its Applications. 2nd Edition, Hafner Press. El Attouga, S., Bouggar, D., El Fatini, M., Hilbert, A. and Pettersson, R. (2023) Lévy Noise with Infinite Activity and the Impact on the Dynamic of an SIRS Epidemic Model. Physica A: Statistical Mechanics and Its Applications, 618, Article 128701. >https://doi.org/10.1016/j.physa.2023.128701 Barman, M. and Mishra, N. (2023) Hopf Bifurcation in a Networked Delay SIR Epidemic Model. Journal of Mathematical Analysis and Applications, 525, Article 127131. >https://doi.org/10.1016/j.jmaa.2023.127131 George, R., Gul, N., Zeb, A., Avazzadeh, Z., Djilali, S. and Rezapour, S. (2022) Bifurcations Analysis of a Discrete Time Sir Epidemic Model with Nonlinear Incidence Function. Results in Physics, 38, Article 105580. >https://doi.org/10.1016/j.rinp.2022.105580 Wang, J. and Dai, B. (2022) Dynamical Analysis of a Multi-Group SIR Epidemic Model with Nonlocal Diffusion and Nonlinear Incidence Rate. Nonlinear Analysis: Real World Applications, 68, Article 103661. >https://doi.org/10.1016/j.nonrwa.2022.103661 Dong, L., Hou, S. and Lei, C. (2022) Global Attractivity of the Equilibria of the Diffusive SIR and SEIR Epidemic Models with Multiple Parallel Infectious Stages and Nonlinear Incidence Mechanism. Applied Mathematics Letters, 134, Article 108352. >https://doi.org/10.1016/j.aml.2022.108352 Chekroun, A. and Kuniya, T. (2020) Global Threshold Dynamics of an Infection Age-Structured SIR Epidemic Model with Diffusion under the Dirichlet Boundary Condition. Journal of Differential Equations, 269, 117-148. >https://doi.org/10.1016/j.jde.2020.04.046 Rajasekar, S.P. and Pitchaimani, M. (2020) Ergodic Stationary Distribution and Extinction of a Stochastic SIRS Epidemic Model with Logistic Growth and Nonlinear Incidence. Applied Mathematics and Computation, 377, Article 125143. >https://doi.org/10.1016/j.amc.2020.125143 Singh, P. and Gupta, A. (2022) Generalized SIR (GSIR) Epidemic Model: An Improved Framework for the Predictive Monitoring of COVID-19 Pandemic. ISA Transactions, 124, 31-40. >https://doi.org/10.1016/j.isatra.2021.02.016 Laguzet, L. and Turinici, G. (2015) Global Optimal Vaccination in the SIR Model: Properties of the Value Function and Application to Cost-Effectiveness Analysis. Mathematical Biosciences, 263, 180-197. >https://doi.org/10.1016/j.mbs.2015.03.002 Zheng, C. (2022) Complex Network Propagation Effect Based on SIRS Model and Research on the Necessity of Smart City Credit System Construction. Alexandria Engineering Journal, 61, 403-418. >https://doi.org/10.1016/j.aej.2021.06.004 Zhang, Y., Tai, S., Zhang, D. and Wu, L. (2023) How to Promote the Diffusion of Green Behavior among Contractors? Analysis and Simulation Using the SIR Model. Journal of Environmental Management, 335, Article 117555. >https://doi.org/10.1016/j.jenvman.2023.117555 Zhang, Y. and Pan, D. (2021) Layered SIRS Model of Information Spread in Complex Networks. Applied Mathematics and Computation, 411, Article 126524. >https://doi.org/10.1016/j.amc.2021.126524 Deimling, K. (1985) Nonlinear Functional Analysis. Springer-Verlag. Motreanu, D., Motreanu, V.V. and Papageorgiou, N.S. (2013) Topological and Variational Methods with Applications to Nonlinear Boundary Problems. Springer.
Baidu
map