References
Parati, G., Agostoni, P., Basnyat, B., Bilo, G., Brugger, H., Coca, A., et al. (2018) Clinical Recommendations for High Altitude Exposure of Individuals with Pre-Existing Cardiovascular Conditions. European Heart Journal, 39, 1546-1554. >https://doi.org/10.1093/eurheartj/ehx720
Park, J.H., Moon, S., Kang, D.H., Um, H.J., Kang, S., Kim, J.Y., et al. (2018) Diquafosol Sodium Inhibits Apoptosis and Inflammation of Corneal Epithelial Cells via Activation of Erk1/2 and RSK: In Vitro and in Vivo Dry Eye Model. Investigative Opthalmology&Visual Science, 59, 5108-5115. >https://doi.org/10.1167/iovs.17-22925
Meier, D., Collet, T., Locatelli, I., Cornuz, J., Kayser, B., Simel, D.L., et al. (2017) Does This Patient Have Acute Mountain Sickness? The Rational Clinical Examination Systematic Review. JAMA, 318, 1810-1819. >https://doi.org/10.1001/jama.2017.16192
Rathor, R., Suryakumar, G. and Singh, S.N. (2021) Diet and Redox State in Maintaining Skeletal Muscle Health and Performance at High Altitude. Free Radical Biology and Medicine, 174, 305-320. >https://doi.org/10.1016/j.freeradbiomed.2021.07.024
Bärtsch, P. and Gibbs, J.S.R. (2007) Effect of Altitude on the Heart and the Lungs. Circulation, 116, 2191-2202. >https://doi.org/10.1161/circulationaha.106.650796
Maufrais, C., Rupp, T., Bouzat, P., Doucende, G., Verges, S., Nottin, S., et al. (2016) Heart Mechanics at High Altitude: 6 Days on the Top of Europe. European Heart Journal—Cardiovascular Imaging, 18, 1369-1377. >https://doi.org/10.1093/ehjci/jew286
Guo, W., Bian, S., Zhang, J., Li, Q., Yu, J., Chen, J., et al. (2016) Physiological and Psychological Factors Associated with Onset of High-Altitude Headache in Chinese Men Upon Acute High-Altitude Exposure at 3700 M. Cephalalgia, 37, 336-347. >https://doi.org/10.1177/0333102416646761
Zila-Velasque, J.P., Grados-Espinoza, P., Morán-Mariños, C., Morales Pocco, K.O., Capcha-Jimenez, U.S. and Ortiz-Benique, Z.N. (2023) Adaptation and Altitude Sickness: A 40-Year Bibliometric Analysis and Collaborative Networks. Frontiers in Public Health, 11, Article 1069212. >https://doi.org/10.3389/fpubh.2023.1069212
Woods, D., Boos, C. and Roberts, P. (2011) Cardiac Arrhythmias at High Altitude. Journal of the Royal Army Medical Corps, 157, 59-62. >https://doi.org/10.1136/jramc-157-01-10
Wang, Q., Hu, L., Hu, Y., Gong, G., Tan, H., Deng, L., et al. (2016) Carbon Monoxide-Saturated Hemoglobin-Based Oxygen Carriers Attenuate High-Altitude-Induced Cardiac Injury by Amelioration of the Inflammation Response and Mitochondrial Oxidative Damage. Cardiology, 136, 180-191. >https://doi.org/10.1159/000448652
Lu, H., Zhang, H. and Jiang, Y. (2020) Methazolamide in High-Altitude Illnesses. European Journal of Pharmaceutical Sciences, 148, Article ID: 105326. >https://doi.org/10.1016/j.ejps.2020.105326
苏锦松, 洪道鑫, 文检, 等. 青藏高原珍稀濒危药用植物大花红景天的资源调查[J]. 中药材, 2017, 40(5): 1046-1050.
Kung-Chun Chiu, D., Pui-Wah Tse, A., Law, C., Ming-Jing Xu, I., Lee, D., Chen, M., et al. (2019) Hypoxia Regulates the Mitochondrial Activity of Hepatocellular Carcinoma Cells through HIF/HEY1/PINK1 Pathway. Cell Death&Disease, 10, Article No. 934. >https://doi.org/10.1038/s41419-019-2155-3
Loboda, A., Jozkowicz, A. and Dulak, J. (2012) HIF-1 versus HIF-2—Is One More Important than the Other? Vascular Pharmacology, 56, 245-251. >https://doi.org/10.1016/j.vph.2012.02.006
Jaakkola, P., Mole, D.R., Tian, Y., Wilson, M.I., Gielbert, J., Gaskell, S.J., et al. (2001) Targeting of HIF-α to the Von Hippel-Lindau Ubiquitylation Complex by O
2-Regulated Prolyl Hydroxylation. Science, 292, 468-472. >https://doi.org/10.1126/science.1059796
Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., et al. (2001) HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O
2Sensing. Science, 292, 464-468. >https://doi.org/10.1126/science.1059817
Knutson, A.K., Williams, A.L., Boisvert, W.A. and Shohet, R.V. (2021) HIF in the Heart: Development, Metabolism, Ischemia, and Atherosclerosis. Journal of Clinical Investigation, 131, e137557. >https://doi.org/10.1172/jci137557
Choudhry, H. and Harris, A.L. (2018) Advances in Hypoxia-Inducible Factor Biology. Cell Metabolism, 27, 281-298. >https://doi.org/10.1016/j.cmet.2017.10.005
Downes, N.L., Laham-Karam, N., Kaikkonen, M.U. and Ylä-Herttuala, S. (2018) Differential But Complementary HIF1α and HIF2α Transcriptional Regulation. Molecular Therapy, 26, 1735-1745. >https://doi.org/10.1016/j.ymthe.2018.05.004
Ramakrishnan, S.K., Taylor, M., Qu, A., Ahn, S., Suresh, M.V., Raghavendran, K., et al. (2014) Loss of Von Hippel-Lindau Protein (VHL) Increases Systemic Cholesterol Levels through Targeting Hypoxia-Inducible Factor 2α and Regulation of Bile Acid Homeostasis. Molecular and Cellular Biology, 34, 1208-1220. >https://doi.org/10.1128/mcb.01441-13
Fukushima, K., Kitamura, S., Tsuji, K. and Wada, J. (2021) Sodium-Glucose Cotransporter 2 Inhibitors Work as a “Regulator” of Autophagic Activity in Overnutrition Diseases. Frontiers in Pharmacology, 12, Article 761842. >https://doi.org/10.3389/fphar.2021.761842
Semenza, G.L. (2012) Hypoxia-Inducible Factors in Physiology and Medicine. Cell, 148, 399-408. >https://doi.org/10.1016/j.cell.2012.01.021
Hu, Y., Zhao, Y., Li, P., Lu, H., Li, H. and Ge, J. (2023) Hypoxia and Panvascular Diseases: Exploring the Role of Hypoxia-Inducible Factors in Vascular Smooth Muscle Cells under Panvascular Pathologies. Science Bulletin, 68, 1954-1974. >https://doi.org/10.1016/j.scib.2023.07.032
Wang, G.L. and Semenza, G.L. (1995) Purification and Characterization of Hypoxia-Inducible Factor 1. Journal of Biological Chemistry, 270, 1230-1237. >https://doi.org/10.1074/jbc.270.3.1230
Wang, G.L., Jiang, B.H., Rue, E.A. and Semenza, G.L. (1995) Hypoxia-inducible Factor 1 Is a Basic-Helix-Loop-Helix-Pas Heterodimer Regulated by Cellular O2 Tension. Proceedings of the National Academy of Sciences of the United States of America, 92, 5510-5514. >https://doi.org/10.1073/pnas.92.12.5510
Forsythe, J.A., Jiang, B., Iyer, N.V., Agani, F., Leung, S.W., Koos, R.D., et al. (1996) Activation of Vascular Endothelial Growth Factor Gene Transcription by Hypoxia-Inducible Factor 1. Molecular and Cellular Biology, 16, 4604-4613. >https://doi.org/10.1128/mcb.16.9.4604
Zhao, Y., Xiong, W., Li, C., Zhao, R., Lu, H., Song, S., et al. (2023) Hypoxia-Induced Signaling in the Cardiovascular System: Pathogenesis and Therapeutic Targets. Signal Transduction and Targeted Therapy, 8, Article No. 431. >https://doi.org/10.1038/s41392-023-01652-9
Iyer, N.V., Kotch, L.E., Agani, F., Leung, S.W., Laughner, E., Wenger, R.H., et al. (1998) Cellular and Developmental Control of O
2Homeostasis by Hypoxia-Inducible Factor 1α. Genes&Development, 12, 149-162. >https://doi.org/10.1101/gad.12.2.149
Rustamova, Y. and Lombardi, M. (2020) Ischemic Heart Disease. In: Rustamova, Y. and Lombardi, M., Eds., Cardiac Magnetic Resonance Atlas, Springer, 63-91. >https://doi.org/10.1007/978-3-030-41830-4_3
Savla, J.J., Levine, B.D. and Sadek, H.A. (2018) The Effect of Hypoxia on Cardiovascular Disease: Friend or Foe? High Altitude Medicine&Biology, 19, 124-130. >https://doi.org/10.1089/ham.2018.0044
Li, X., Wang, W., Li, M., Liu, T., Tian, X. and Wu, L. (2022) Effects of Altitude and Duration of Differing Levels of Hypoxic Exposure on Hypoxia-Inducible Factor-1α in Rat Tissues. High Altitude Medicine&Biology, 23, 173-184. >https://doi.org/10.1089/ham.2021.0100
Hashmi, S. and Al-Salam, S. (2012) Hypoxia-Inducible Factor-1 α in the Heart. Cardiology in Review, 20, 268-273. >https://doi.org/10.1097/crd.0b013e31826287f6
Singh, M., Thomas, P., Shukla, D., Tulsawani, R., Saxena, S. and Bansal, A. (2013) Effect of Subchronic Hypobaric Hypoxia on Oxidative Stress in Rat Heart. Applied Biochemistry and Biotechnology, 169, 2405-2419. >https://doi.org/10.1007/s12010-013-0141-2
Virzì, G.M., Clementi, A. and Ronco, C. (2016) Cellular Apoptosis in the Cardiorenal Axis. Heart Failure Reviews, 21, 177-189. >https://doi.org/10.1007/s10741-016-9534-y
Xuan, Y., Liu, S., Li, Y., Dong, J., Luo, J., Liu, T., et al. (2017) Short-Term Vagus Nerve Stimulation Reduces Myocardial Apoptosis by Downregulating Microrna-205 in Rats with Chronic Heart Failure. Molecular Medicine Reports, 16, 5847-5854. >https://doi.org/10.3892/mmr.2017.7344
Dong, W., Gao, D., Lin, H., Zhang, X., Li, N. and Li, F. (2008) New Insights into Mechanism for the Effect of Resveratrol Preconditioning against Cerebral Ischemic Stroke: Possible Role of Matrix Metalloprotease-9. Medical Hypotheses, 70, 52-55. >https://doi.org/10.1016/j.mehy.2007.04.033
Ní Chróinín, D., Asplund, K., Åsberg, S., Callaly, E., Cuadrado-Godia, E., Díez-Tejedor, E., et al. (2013) Statin Therapy and Outcome after Ischemic Stroke: Systematic Review and Meta-Analysis of Observational Studies and Randomized Trials. Stroke, 44, 448-456. >https://doi.org/10.1161/strokeaha.112.668277
Chen, L., Luo, S., Yan, L. and Zhao, W. (2014) A Systematic Review of Closure versus Medical Therapy for Preventing Recurrent Stroke in Patients with Patent Foramen Ovale and Cryptogenic Stroke or Transient Ischemic Attack. Journal of the Neurological Sciences, 337, 3-7. >https://doi.org/10.1016/j.jns.2013.11.027
Zhang, Y., Liu, D., Hu, H., Zhang, P., Xie, R. and Cui, W. (2019) Hif-1α/BNIP3 Signaling Pathway-Induced-Autophagy Plays Protective Role during Myocardial Ischemia-Reperfusion Injury. Biomedicine&Pharmacotherapy, 120, Article ID: 109464. >https://doi.org/10.1016/j.biopha.2019.109464
Feng, J., Zhan, J. and Ma, S. (2021) LRG1 Promotes Hypoxia-Induced Cardiomyocyte Apoptosis and Autophagy by Regulating Hypoxia-Inducible Factor-1α. Bioengineered, 12, 8897-8907. >https://doi.org/10.1080/21655979.2021.1988368
Yu, H., Chen, B. and Ren, Q. (2019) Baicalin Relieves Hypoxia-Aroused H9c2 Cell Apoptosis by Activating Nrf2/HO-1-Mediated HIF1α/BNIP3 Pathway. Artificial Cells, Nanomedicine, and Biotechnology, 47, 3657-3663. >https://doi.org/10.1080/21691401.2019.1657879
Pham, K., Parikh, K. and Heinrich, E.C. (2021) Hypoxia and Inflammation: Insights from High-Altitude Physiology. Frontiers in Physiology, 12, Article 676782. >https://doi.org/10.3389/fphys.2021.676782
Lee, J.W., Ko, J., Ju, C. and Eltzschig, H.K. (2019) Hypoxia Signaling in Human Diseases and Therapeutic Targets. Experimental&Molecular Medicine, 51, 1-13. >https://doi.org/10.1038/s12276-019-0235-1
Li, H., Zhou, Y., Li, L., Li, S., Long, D., Chen, X., et al. (2019) HIF-1α Protects against Oxidative Stress by Directly Targeting Mitochondria. Redox Biology, 25, Article ID: 101109. >https://doi.org/10.1016/j.redox.2019.101109
Zhu, N., Li, J., Li, Y., Zhang, Y., Du, Q., Hao, P., et al. (2020) Berberine Protects against Simulated Ischemia/Reperfusion Injury-Induced H9C2 Cardiomyocytes Apoptosis in Vitro and Myocardial Ischemia/Reperfusion-Induced Apoptosis in Vivo by Regulating the Mitophagy-Mediated HIF-1α/BNIP3 Pathway. Frontiers in Pharmacology, 11, Article 367. >https://doi.org/10.3389/fphar.2020.00367
Tormos, K.V. and Chandel, N.S. (2010) Inter‐Connection between Mitochondria and HIFs. Journal of Cellular and Molecular Medicine, 14, 795-804. >https://doi.org/10.1111/j.1582-4934.2010.01031.x