Table 1. Main water quality monitoring indexes of a landfill leachateTable 1. Main water quality monitoring indexes of a landfill leachate 表1. 某垃圾渗滤液主要水质监测指标
溶解氧探头为哈希LDO II 9020000荧光溶解氧在线传感器。溶解氧探头测定的溶解氧读数经数据采集控制模块(美国NI USB-6009)被计算机读取。通过计算机设定反应器内溶解氧浓度的高值和低值。当反应器内溶解氧浓度低于设定低值时,由计算机发出指令,经过数据采集控制模块,控制曝气泵的开启,对反应器内混合液进行充氧,当反应器内溶解氧浓度到达设定高值时,自动关闭曝气泵。OUR测定过程中,搅拌器一直处于开启状态。
References
Ghosh, P., Thakur, I.S. and Kaushik, A. (2017) Bioassays for Toxicological Risk Assessment of Landfill Leachate: A Review. Ecotoxicology and Environmental Safety, 141, 259-270. >https://doi.org/10.1016/j.ecoenv.2017.03.023
Jung, C., Deng, Y., Zhao, R., et al. (2017) Chemical Oxidation for Mitigation of UV-Quenching Substances (UVQS) from Municipal Landfill Leachate: Fenton Process versus Ozonation. Water Research, 108, 260-270. >https://doi.org/10.1016/j.watres.2016.11.005
徐晓晨, 冯骁, 杨蒙, 等. 厌氧消化与两级串联SNAD-IFAS组合工艺处理垃圾渗滤液研究[J]. 大连理工大学学报, 2020, 60(6): 562-569.
吴莉娜, 徐莹莹, 史枭, 等. 短程硝化-厌氧氨氧化组合工艺深度处理垃圾渗滤液[J]. 环境科学研究, 2016, 29 (4): 587-593.
Hynes, R. and Knowles, R. (1983) Inhibition of Chemoautotrophic Nitrification by Sodium Chlorate and Sodium Chlorite: A Reexamination. Applied and Environmental Microbiology, 45, 1178-1182.
刘宏伟, 崔蕾, 郝春明. 氧吸收速率(OUR)表征短程硝化试验污泥活性的研究[J]. 能源环境保护, 2007, 21(5): 21-23.
王建龙, 吴立波, 齐星, 等. 用氧吸收速率(OUR)表征活性污泥硝化活性的研究[J]. 环境科学学报, 1999, 19(3): 225-229.
Kroiss, H., Schweighofer, P., Frey, W., et al. (1992) Nitrification Inhibition—A Source Identification Method for Combined Municipal and/or Industrial Wastewater Treatment Plants. Water Science and Technology, 26, 1135-1146. >https://doi.org/10.2166/wst.1992.0555
胡琼玲, 高秋实, 胡纪萃, 等. 利用瓦勃氏呼吸仪研究废水生物处理中的问题[J]. 化工环保, 1985(3): 14-20.
Marais, G.V.R. and Ekama, G. (1976) The Activated Sludge Process. Part 1—Steady State Behaviour. Water Sa, 2. 163-200.
Yoong, E.T., Lant, P.A. and Greenfield, P.F. (2000) In situ Respirometry in an SBR Treating Wastewater with High Phenol Concentrations. Water Research, 34, 239-245. >https://doi.org/10.1016/S0043-1354(99)00142-6
Dold, P.L. and Marais, G.V.R. (1986) Evaluation of the General Activated Sludge Model Proposed by the IAWPRC Task Group. Water Science and Technology, 18, 63-89. >https://doi.org/10.2166/wst.1986.0061
Anthonisen, A.C., Loehr, R.C., Prakasam, T.B.S., et al. (1976) Inhibition of Nitrification by Ammonia and Nitrous Acid. Journal of Water Pollution Control Federation, 48, 835-852.
Henze, M. (1992) Characterization of Wastewater for Modelling of Activated Sludge Processes. Water Science and Technology, 25, 1-15. >https://doi.org/10.2166/wst.1992.0110
Spanjers, H. and Vanrolleghem, P. (1995) Respirometry as a Tool for Rapid Characterization of Wastewater and Activated Sludge. Water Science and Technology, 31, 105-114. >https://doi.org/10.2166/wst.1995.0082
Coen, F., Petersen, B., Vanrolleghem, P.A., et al. (1998) Model-Based Characterisation of Hydraulic, Kinetic and Influent Properties of an Industrial WWTP. Water Science and Technology, 37, 317-326. >https://doi.org/10.2166/wst.1998.0557
Ganesh, R., Balaji, G. and Ramanujam, R.A. (2006) Biodegradation of Tannery Wastewater Using Sequencing Batch Reactor-Respirometric Assessment. Bioresource Technology, 97, 1815-1821. >https://doi.org/10.1016/j.biortech.2005.09.003
Kappeler, J. and Gujer, W. (1992) Estimation of Kinetic Parameters of Heterotrophic Biomass under Aerobic Conditions and Characterization of Wastewater for Activated Sludge Modelling. Water Science and Technology, 25, 125-139. >https://doi.org/10.2166/wst.1992.0118