在一致性任务中,如 Stroop 任务、 Flanker 任务和 Simon 任务,冲突适应表现为不一致试次之后的一致性效应 ( 不一致试次与一致试次的行为差异 ) 显著地小于一致试次之后的一致性效应。本文以 Stroop任务 为例,介绍冲突适应的神经机制。事件相关电位研究显示, N450 的波幅调整与大脑对冲突的监测有关, 持续电位 (sustained potential, SP) 的波幅调整与冲突解决有关 。时频分析显示,大脑 θ频带(theta-band, 4~7 Hz)的能量增加可能与冲突适应有关 。功能磁共振研究显示,前扣带回 (anterior cingulate cortex, ACC) 和背外侧前额叶 (dorsolateral prefrontal cortex, DLPFC) 分别在冲突监测和冲突控制过程中扮演着重要角色。最后,该文介绍了冲突适应及其神经机制研究的新进展。 In the congruency tasks, e.g., Stroop task, Flanker task, and Simon task, conflict adaptation refers to smaller congruency effects which are indexed by the performance differences between incongruent and congruent trials following incongruent compared with congruent trials. This paper introduces the neural mechanisms of conflict adaptation in the Stroop task. The event-related potentials (ERPs) studies demonstrate that the N450 is mainly correlated with conflict monitoring; the conflict sustained potential (SP) is mainly related to conflict resolution. The time-frequency analysis displays that the increased magnitude of theta-band (4 - 7 Hz) may index conflict adaptation. Some functional magnetic resonance imaging (fMRI) studies reveal that anterior cingulate cortex (ACC) and (dorsolateral prefrontal cortex) DLPFC play important roles in the processes of conflict monitoring and control implemention. New progresses are discussed in the studies of neural mechanisms of conflict adaptation at last.
当人们面临困难或干扰时,大脑可以根据先前的经验,有效地利用认知资源来解决困难或排除干扰,从而优化当前的行为(Miller & Cohen, 2001)。这种现象类似于认知控制中的冲突适应(Gratton, Coles, &Donchin, 1992),它最早由Gratton等人采用Flanker任务发现。此后,在其它的干扰任务中,研究者也观察到了显着的冲突适应(Egner, 2007)。Stroop任务是冲突适应研究领域中使用最广泛的任务之一,该文主要以Stroop任务为例,介绍冲突适应的神经机制。在经典的Stroop任务(Stroop, 1935)中,个体需要命名字的墨水颜色同时忽略字的意义。在一致条件(简称C或c条件)下,字的颜色和意义相同(如,用红色打印的“红”字);在不一致条件(简称I或i条件)下,字的颜色和意义不同(如,用红色打印的“绿”字)。Stroop干扰效应(一致性效应)即不一致条件与一致条件的反应时(错误率)之差(综述详见MacLeod, 1991),表现为不一致条件的反应时比一致条件的反应时更长、错误率更高。研究发现,一致性效应受到先前试次中冲突水平的调节:不一致条件之后的一致性效应显著地小于一致条件之后的一致性效应,表现出冲突适应(Botvinick, Braver, Barch, Carter, & Cohen, 2001)。
冲突适应是支持冲突监测理论(conflict monitoring theory)的关键性实验证据(Botvinick et al., 2001; Botvinick, Cohen, & Carter, 2004; Botvinick, Nystrom, Fissell, Carter, & Cohen, 1999)。冲突监测理论认为,冲突适应是源于认知系统对冲突的调节,这种调节是通过自上而下的认知加工来实现的。具体表现为大脑在先前试次中,监测到冲突出现的信息,从而在下一试次出现之前调整认知资源,以便在下一试次中对冲突进行更好的控制;反之,如果在先前试次中不出现冲突信息,大脑便不能在下一试次出现之前调整认知资源,那么在下一试次中对冲突的控制更差。所以,在行为上表现出对冲突的适应(Botvinick et al., 2001; Botvinick et al., 2004; Botvinick et al., 1999)。研究者根据先前试次和当前试次的一致性,将C条件和I条件进一步划分为cC、iC、cI和iI条件:iC条件被界定为跟随在不一致条件之后的一致条件;iI条件被界定为跟随在不一致条件之后的不一致条件;cC条件被界定为跟随在一致条件之后的一致条件;cI条件被界定为跟随在一致条件之后的不一致条件。在行为上,冲突适应的计算公式为:[cI-cC] − [iI-iC] (Botvinick et al., 1999; Nieuwenhuis et al., 2006; Stürmer, Leuthold, Soetens, Schröter, & Sommer, 2002),具体表现为[cI-cC]显著大于[iI-iC]。
近年来的认知神经科学研究为冲突适应提供了更直接的神经生理学上的实验证据。根据冲突监测理论,大脑在先前的不一致条件下监测到冲突信息,并提前进行认知资源的调整,使更多的资源被调用到下一试次中,所以下一试次中的干扰效应更小。在先前的一致条件下,个体无法在当前试次之前监测到冲突信息,所以下一试次中的干扰效应更大。这得到了认知神经领域上的研究结果的证实。
ERP研究发现,Stroop任务引发了两种特异性的ERP成分:与冲突监测有关的ERP成分主要是N450,与冲突解决有关的ERP成分主要是持续电位(sustained potential, SP) (Chen, Bailey, Tiernan, & West, 2011; Clayson & Larson, 2011a, 2011b; Donohue, Liotti, Perez, & Woldorff, 2011; Larson, Kaufman, & Perlstein, 2009a, 2009b)。
N450主要出现在两个脑区:大脑的中前区(frontocentral region)和外侧前额叶(lateral prefrontal cortex)。它的极性有两个特点:1) 中前区的极性为负,即不一致条件的波幅比一致条件的波幅更负;2) 外侧前额叶的极性发生倒转,即不一致条件的波幅比一致条件的波幅更正(Liotti, Woldorff, Perez III, & Mayberg, 2000; West & Alain, 1999, 2000; West, Jakubek, Wymbs, Perry, & Moore, 2005)。N450的峰值大约出现在刺激呈现后400~500 ms,并且N450具有任务特异性,主要在Stroop任务中扮演冲突监测的角色(West, Bowry, & McConville, 2004; West et al., 2005)。另外,和C试次所诱发的N450波幅相比,包含反应冲突和非反应冲突(刺激冲突)的试次都能诱发更大的波幅(Appelbaum, Meyerhoff, & Woldorff, 2009; Chen et al., 2011; van Veen & Carter, 2002; West & Alain, 1999; West et al., 2004)。说明N450的波幅对Stroop任务中的反应冲突和非反应冲突都较敏感(West et al., 2004)。有研究发现,N450的波幅受到一致试次和不一致试次比例的影响。当采用大比例的一致试次时(70%一致和30%不一致),任务中的冲突更大,干扰更强,N450的波幅更大(West & Alain, 2000),这进一步说明N450与冲突的监测有关。
West等(2005)利用ERP技术考察了冲突加工的神经机制,他们发现在词–色Stroop任务、计数Stroop (counting Stroop)任务和数字距离(digit-location)任务中,不一致条件的N450波幅比一致条件的波幅更负。说明在Stroop-like任务中,大脑能监测到不一致条件中的冲突信息。但他们没有研究冲突适应,不能考察N450在冲突适应过程中的神经功能。而Larson等(2009b)研究了Stroop任务中冲突适应的神经机制,他们对反应时的差异(cI-iI)和N450波幅的差异(cI-iI)求相关。结果显示相关不显著,表明N450对先前试次的影响不敏感,不能反应冲突适应。他们据此推论N450可能只与当前试次的冲突监测加工有关,不受先前试次中的冲突环境的影响。以脑损伤病人和正常成人为被试,这一结论在另外他们的两个研究中得到了证实(Larson, Farrer, & Clayson, 2011; Larson et al., 2009a)。
ERP的偶极子源定位结果显示,前扣带回(anterior cingulate cortex, ACC)或者前部额叶皮质(anterior frontal cortex)是N450成分的神经发生源(Chen et al., 2011; Markela-Lerenc et al., 2004; West, 2003; West et al., 2004; West, Choi, & Travers, 2010)。而功能磁共振(functional magnetic resonance imaging, fMRI)的研究结果显示,ACC或前部额叶皮质在冲突监测上扮演着重要角色(Forster, Carter, Cohen, & Cho, 2011; Grinband et al., 2010; Kerns et al., 2004; Mitchell, 2010)。特别是ACC,它能根据先前试次中监测到的冲突信息,在当前试次出现之前发出信息给背外侧前额叶(dorsal lateral prefrontal cortex, DLPFC),使之调整认知资源,实施对冲突的控制。由此,我们认为,之所以Larson等的实验数据不能证明N450波幅的变化对应着被试根据先前试次的一致性调整了认知资源,可能是由于在他们的实验中采用了大比例的一致试次(如,一致试次占75%,不一致试次占25%)。这样的设计放大了整个任务中的冲突,导致cI和iI条件中N450的波幅都较大,所以cI和iI条件的N450波幅差异小,反应时的差异(cI-iI)和N450波幅的差异(cI-iI)的相关性减小。如果一致试次和不一致试次的比例相等,那么任务中的冲突既不被放大也不被缩小,冲突监测加工将更加纯净,可能N450的波幅变化就能够反映出大脑(根据先前试次的冲突环境)对认知资源的调整。
SP是持续性的中顶区(parieto-central region)的正波、外侧前额叶的负波。它的极性也有两个特点:1) 在中顶区,不一致条件的波幅比一致条件的波幅更正;2) 在外侧前额叶,不一致条件的波幅比一致条件的波幅更负。在Stroop任务中,它通常出现在N450之后,大约从500 ms一直持续到1200 ms (Chen et al., 2011; Donohue et al., 2011; Liotti et al., 2000; West, 2003; West & Alain, 2000)。尽管对SP的神经变化特征还未达成共识,但研究显示,SP也是Stroop任务中的特异性的ERP成分(West et al., 2004; West et al., 2010; West et al., 2005),并且可能在任务中扮演着不同的角色。West等(2004)认为,SP的波幅调整与反应准备有关;也有研究证实SP的波幅调整与冲突加工(Liotti et al., 2000; Perlstein, Larson, Dotson, & Kelly, 2006; West, 2003; West & Alain, 2000)或者反应选择(West et al., 2005)有关。另外的研究发现,在正确的一致试次或错误试次中的SP波幅更负,在正确的不一致试次中的SP波幅更正,这可能说明SP扮演着冲突解决的角色(Chen et al., 2011; Donohue et al., 2011; West, 2003)。
近来的研究证实,刺激诱发的中顶区SP与Stroop任务中的冲突适应有关(Larson et al., 2009b)。Larson等(2009b)的研究显示,中顶区的SP波幅在cI、iI、iC和cC条件下呈逐渐减小的趋势。作者认为,SP的波幅受到先前试次中的冲突影响。在当前的I条件下,为了有效地完成一个任务,被试需要利用先前试次的冲突信息来解决当前试次的冲突,并且冲突的解决可能是通过反应的选择来实现的。这和West等的研究一致,他们的研究显示,SP和整体的反应时和正确率都有关,说明SP与反应选择有关(West et al., 2005)。尽管目前对SP的神经触发源还不清楚,但许多研究显示,它的神经源定位于外侧前额叶和后顶叶(posterior parietal cortex, PPC) (Chen et al., 2011; Hanslmayr et al., 2008; West, 2003; West et al., 2010)。由于ERP的空间分辨率低,不同的研究对其精细的神经发生源并没有达成共识,今后的研究或许可以采用经颅磁刺激(transcranial magnetic stimulation, TMS)或fMRI对SP进行更精确的空间定位。
综上所述,虽然已经证实N450在冲突监测中起着重要的作用,但中前区的N450和前额叶的N450的功能意义可能是不同的。由于反应准备和反应冲突通常会导致中前区大脑皮质的激活,如ACC的激活(Zysset, Müller, Lohmann, & Von Cramon, 2001),那么中前区的N450可能与反应冲突的监测有关。同时,由于N450的波幅调整可以反映大脑对反应冲突和非反应冲突的监测,那么前额叶的N450可能与非反应冲突或这两种形式的冲突监测都有关。所以,将来的研究可以考察不同脑区的N450所监测的冲突类型,以使研究者对它的神经功能意义有更准确的理解。另外,由于PPC所诱发的SP可能与大脑对即将出现的冲突准备有关,主要在冲突的调节特别是动机的反应准备中起作用(Barch et al., 2001; Casey et al., 2000; Fan, Flombaum, McCandliss, Thomas, & Posner, 2003; Iyer, Lindner, Kagan, & Andersen, 2010; Liston, Matalon, Hare, Davidson, & Casey, 2006; Milham, Banich, Claus, & Cohen, 2003; Roelofs, van Turennout, & Coles, 2006),那么,该文认为在先前试次中,大脑可能将监测到冲突信号传递给PPC,PPC再对冲突进行控制,以适应当前的冲突情景,在行为上表现出冲突适应。但目前还没有ERP研究考察中前区和PPC之间的关系。今后的研究或许可以直接计算N450和后顶部SP波幅的相关,以完善冲突监测理论。
虽然ERP研究结果能为冲突适应提供高精度的时间变化上的证据,但是ERP仅仅是对脑电(electroencephalography, EEG)数据在时域(time-domain,时间维度)上进行叠加平均,通过这种方式获得的ERP波形也只是锁时和锁相的(timeand phase-locked) (Cohen, 2011)。由于大脑的神经电活动是振荡的(oscillatory)、非锁相的(non-phase-locked)事件,那么刺激的呈现将诱发连续振荡的EEG活动。这些EEG活动反映了神经元节律性的兴奋或抑制,而特定的神经元节律性的兴奋或抑制则反映了特定的认知加工(Tiesinga, Fellous, & Sejnowski, 2008; Wang, 2010)。所以,如果只在时域上对EEG数据进行叠加平均,那么许多与认知相关的信息将丢失(Makeig, Debener, Onton, & Delorme, 2004)。近年来,采用时频分析(timefrequency analysis)方法可以在时频域(time-frequency-domain,时间和频率维度)上展现多维度的EEG信息,包括时间、频率(振荡的速度)、能量(在特定时间点和特定频带的相对能量)、相位(振荡的位置沿着正弦波,这种正弦波被神经元的兴奋性或抑制性状态所诱发)(Cohen, 2011; Makeig et al., 2004)。这些与认知加工相关的信息通常反映在特定的频带上,以短时间内EEG能量的增加(event-related synchronization, ERS, 事件相关同步性)或减少(event-related desynchronization,ERD,事件相关异步性)的形式展现出来。不同频带的ERS和ERD即反映了大脑皮层的激活或抑制机制(Pfurtscheller & Lopes da Silva, 1999)。
对EEG数据进行时频分析发现,大脑中前区、外侧前额叶和感觉运动区(sensory-motor areas)的θ频带(theta-band, 4~7 Hz)的ERS可能与冲突适应有关(Cavanagh, Cohen, & Allen, 2009; Cavanagh, Frank, Klein, & Allen, 2010; Cohen, 2011; Cohen & Cavanagh, 2011; Cohen, Ridderinkhof, Haupt, Elger, & Fell, 2008; Hanslmayr et al., 2008)。并且比起一致试次或正确反应的试次,正确的不一致试次或反应错误的试次都能诱发更强的中前区θ频带的ERS。所以,θ频带的ERS即反映了大脑的对冲突或错误的监测。θ频带的ERS越大,大脑的激活状态越高(Botvinick et al., 2004; Cavanagh et al., 2009; Luu, Tucker, & Makeig, 2004; Trujillo & Allen, 2007)。研究发现,θ频带的激活主要源于海马(hippocampus)、前额叶(Raghavachari et al., 2006)和ACC(Tsujimoto, Shimazu, & Isomura, 2006; Wang, Ulbert, Schomer, Marinkovic, & Halgren, 2005; Womelsdorf et al., 2007)。Hanslmayr等(2008)采用Stroop任务发现,在400~500 ms,ACC产生的θ频带的能量随着任务中干扰的增加而增加;在600~800 ms,不一致条件的ACC和左侧PFC的相位连通性比一致条件和中性条件更持久。这说明Stroop任务中的干扰出现在刺激呈现后400~500 ms,主要激活了ACC;随后(600~800 ms),θ频带受到持续性的激活,大脑通过ACC-PFC环路调用至上而下的认知控制机制以解决冲突。所以,θ频带的能量增长可能与中央执行系统的冲突加工有关,主要涉及到冲突监测和反应冲突的解决。这得到了很多研究的证实(Cavanagh, Zambrano-Vazquez, & Allen, 2011; Cohen & Cavanagh, 2011),也一致于冲突监测理论。
综上所述,目前在时频域上考察冲突适应的研究还很少。由于时频域上展现的信息更真实地反映了大脑处理信息的神经变化过程,所以,今后的研究除了在时域上展现冲突适应的时间变化过程外,还可以对EEG数据进行时频转换,即采用连续小波变换(continuous wavelet transform, CWT; Morlet wavelet transform, MWT) (Peng, Hu, Zhang, & Hu, 2012)或窗口傅里叶变换(windowed Fourier transform, WFT) (Zhang, Hu, Hung, Mouraux, & Iannetti, 2012),在时频域上展现冲突适应的大脑振荡过程。也可以将时域和时频域上的结果进行对比分析,以对冲突监测理论关于冲突适应的神经机制的解释起补充作用。
冲突适应的fMRI研究结果为冲突监测理论提供了高空间分辨率的证据(Botvinick et al., 2004; Carter et al., 1998; Kerns, 2006; Matsumoto & Tanaka, 2004; Yeung, Botvinick, & Cohen, 2004)。研究发现,大脑的冲突监测结构ACC和大脑冲突解决的结构DLPFC的共同作用导致了冲突适应(di Pellegrino, Ciaramelli, & Ladavas, 2007; Egner & Hirsch, 2005a, 2005b; Floden, Vallesi, & Stuss, 2011; Kerns et al., 2004; Liston et al., 2006; Silton et al., 2010)。冲突监测理论认为,大脑中存在着从ACC到DLPFC的信息传递环路(Nee, Wager, & Jonides, 2007; Wang et al., 2010)。先前试次中的冲突信息被ACC监测到,ACC再将监测到的冲突信号传递给负责冲突控制的脑区DLPFC,DLPFC接收到该信息后,调整认知资源使大脑在当前试出现之前便处于积极的准备状态。在当前试次中如果出现冲突,大脑就能对冲突进行更好的控制,从而提升当前试次的行为表现(Kerns et al., 2004; Matsumoto & Tanaka, 2004; van Veen & Carter, 2006)。
Kerns等人(2004)采用Stroop任务并且控制了重复启动效应之后,发现ACC与冲突相关的激活在很大程度上预测了DLPFC的激活和冲突适应的大小。这就直接说明了ACC-DLPFC冲突监控环路在冲突适应中的作用。但在Kerns等人(2004)之前,没有直接的证据证明ACC与冲突相关的激活预测了随后的神经上的或行为上的适应效应。近来的研究发现,人类的背侧前扣带回(dorsal-ACC, dACC)神经元对冲突适应有调节作用(Sheth et al., 2012)。他们采用fMRI和单神经元记录技术,考察正常成人被试在完成多溯源干扰任务(Multi-Source Interference Task, MSIT, 即Stroop-like任务)时的神经机制。结果表明,单个dACC神经元的放电反映了当前和先前的认知负荷(冲突),并且当前试次和先前试次的dACC的激活调整产生了行为上的冲突适应。此外,当用外科手术定向切除dACC后,行为上的冲突适应完全消失。所以作者认为dACC的激活可以反映大脑对冲突的监测,并且可以根据dACC的激活情况预测被试未来的行为反应。
另外的研究以药物滥用和精神分裂症患者为被试,研究ACC和DLPFC在冲突适应中的交互作用机制。如(Salo, Ursu, Buonocore, Leamon, & Carter, 2009)以正常成人(控制组)和甲基苯丙胺(Methamphetamine, MA)滥用的病人(实验组)为被试,考察药物滥用病人在完成Stroop任务中的行为表现和大脑激活情况。结果发现,在ACC的激活差异(I-C)上,两组被试没有显著差异。作者认为ACC的功能可能不受MA滥用的影响,MA滥用被试仍然能和控制组被试同等程度地监测到冲突。然后他们比较了DLPFC的激活在iI和cI条件中的差异(iI-cI反映了执行控制能力)。结果发现控制组被试的差异显著大于实验组被试的差异,而且实验组被试几乎没有出现DLPFC的激活。这说明MA滥用导致了异常的DLPFC的激活,虽然实验组被试能监测到冲突,但是他们的执行控制能力受损。那么,尽管在先前试次中大脑监测到冲突信息,但在当前试次再次出现冲突信号时,由于MA滥用病人出现了行为调整的缺失,所以不能对当前的冲突实施有效的控制,也就不能表现出冲突适应。
也有研究采用Stroop任务,考察精神分裂症患者和正常成人被试的执行控制能力(冲突监测、冲突解决)。结果发现:在行为上,精神分裂症患者没有表现出冲突适应;在神经激活上,尽管ACC的激活减少,但DLPFC的激活不受影响,说明认知控制功能的损伤源于ACC冲突监测功能的损伤(Kerns et al., 2005; Kopp & Rist, 1999)。一方面,这些结果和MA滥用病人的结果相反,可能是由于被试差异造成的。另一方面,所有病人都没有在行为上表现出冲突适应,也没有出现ACC和DLPFC的共同激活,排除被试差异因素后,这些结果说明ACC和DLPFC之间的共同作用导致了冲突适应。
Egner (2011) 采用人脸–单词Stroop任务考察冲突适应的神经机制。结果发现,腹外侧前额叶(ventrolateral prefrontal cortex, vlPFC) 在冲突诱发的行为的调节中起作用。作者认为vlPFC在冲突控制中起着首要的作用,当控制未成功时,DLPFC可以起到补充的作用。我们认为,Egner并没有否认DLPFC的控制作用,而是对DLPFC的控制作用进行了扩充。因为Egner采用的是人脸–单词Stroop任务,人们对人脸的加工是特异化的(Kanwisher, 2000; Kanwisher, McDermott, & Chun, 1997),主要涉及到纹状体区域(fusiform face area, FFA)对人脸的早期知觉加工,而DLPFC和vlPFC都属于前额叶的高级脑区,大脑可能对冲突信号首先进行粗略的加工,然后再进行精细的控制。所以,可能解决人脸-单词Stroop冲突涉及到更复杂的认知控制过程。这一推测还需要进一步验证,今后的研究应该更多的采用不同的冲突任务,考察被试完成不同任务时所激活的脑区之间的差异。
在近来的一项ERP研究中(Clayson & Larson, 2011a),Claysona和Larson采用一致试次和不一致试次的比例接近1:1的箭头Flanker任务,以N2和P3为ERP指标来考察试次之间的冲突适应。在排除了重复启动效应(Mayr, Awh, & Laurey, 2003)之后,行为数据(反应时和正确率)和ERP (N2和P3波幅)数据都显示了稳定的冲突适应,并且不一致条件的N2、P3波幅都与不一致条件的反应时有显著的相关。这些结果说明在Flanker任务中,N2波幅受到先前试次一致性的影响,其波幅的调整反映了大脑对冲突的监测(综述详见Folstein & Van Petten, 2008),这和Stroop任务中的N450的神经功能意义相似。并且大脑能根据先前试次的一致性,通过至上而下的认知控制来调整认知资源(Danielmeier, Wessel, Steinhauser, & Ullsperger, 2009; Forster et al., 2011),所以在下一试次中表现出行为上的适应(Freitas, Banai, & Clark, 2009)。 P3的波幅也敏感于先前试次的一致性(Correa, Rao, & Nobre, 2009),说明P3波幅反应了大脑调用注意资源以提升认知控制加工(综述详见Polich, 2007),在冲突适应的过程中,其波幅调整反应了大脑执行控制的过程。所以,在Flanker任务中,N2和P3的波幅调整能够反映出冲突适应的神经动态过程。将来的研究如果采用Flanker任务考察冲突适应的神经机制,研究者可以考虑选择N2和P3作为ERP指标。
在时频域上,Cohen和Cavanagh (2011)采用字母Flanker任务考察前额叶的θ振荡在反应冲突解决中的角色。通过对时频EEG数据的单试次(single-trial)多重回归分析发现,中前区–外侧前额叶的θ频带的ERS与冲突加工有关;并且中前区和外侧前额叶的功能连通性越强,冲突条件的干扰越小,更容易在行为上表现出冲突适应。这表明在冲突任务中,θ频带的能量变化反映了大脑调用认知资源,执行对冲突的控制,这得到了(Nigbur, Ivanova, & Stürmer, 2011)的实验结果的证实。他们联合了Simon任务、flanker任务和Go-NoGo任务考察是否中前部θ频带的能量变化与冲突监测有关。结果显示:在三种冲突任务中,θ频带的能量在干扰条件下都显著增加(ERS增强)。源定位显示,ACC和前辅助运动区(pre-supplementary motor areas, pre-SMA)是θ频带的神经触发源。这可能也说明θ频带的能量变化与任务类型无关,即反映了独立于任务之外的冲突监测。
该文主要以Stroop任务为例,简述了冲突适应的神经机制:1) 在时域上,N450和SP分别与冲突监测和冲突解决有关。2) 在时频域上,大脑中前部θ频带(4~7 Hz)的ERS可能反映了冲突适应。3) fMRI研究结果显示,ACC的激活反映了大脑对冲突的监测,DLPFC的激活反映了大脑对冲突的控制。在其它冲突任务中研究冲突适应及其神经机制,参看Egner (2007)、Mansouri, Tanaka和Buckley (2009)、Carter和Van Veen (2007)和Cohen (2011)的综述。尽管目前的研究结果有利于我们理解冲突适应及其神经机制,但现有研究在实验范式和数据分析方法上还存一些局限。因此,该文对今后的进一步研究提出如下三点建议:
1) 采用新的实验范式来研究冲突适应。由于冲突适应受到特征重复启动的影响,但排除了重复之后,在连续的试次之间总是反应改变的,这种反应改变可能会引进反应转换效应(Franke, Reuter, Breddin, & Kathmann, 2009; Kenner et al., 2010; Reuter, Philipp, Koch, & Kathmann, 2006)。由于反应转换效应在一致条件和不一致条件的作用是不对等的,那么去掉反应重复试次后将不利于解决当前试次的冲突,从而掩盖冲突适应。因此,要获得纯净的冲突适应,除了要排除重复启动效应和负启动效应外,还应该排除反应转换效应。唐丹丹、刘培朵和陈安涛(2012)在Stroop任务中设计了冲突观察实验范式。该范式包括两种任务:冲突观察任务(观察Stroop颜色字,但不做反应)和手动反应任务(观察Stroop颜色字,并且做反应)。他们在当前试次中得到了稳定的冲突适应,说明冲突观察能够诱发冲突适应。这种实验范式采用的是标准的Stroop任务,在其它的冲突任务中,如Flanker任务(唐丹丹和陈安涛,2012)和Simon任务,该范式可能同样适用。
2) 考察试次之内(within trial)的冲突适应及其神经机制,以拓宽冲突适应的研究思路。根据冲突监测理论,目前对冲突适应的研究主要集中在考察试次之间(trial-by-trial)的冲突的调整。而在同一个试次之内,认知控制也可能同时诱发冲突监测和冲突控制的加工,从而出现冲突适应。所以,如果采用EEG技术,研究者能在同一试次中先后得到与冲突监测有关的ERP成分(如,N2和N450)和与冲突控制有关的成分(如,SP)的差异[cI-cC]-[iI-iC],这便证明冲突适应能发生在试次之内。
3) 拓宽数据分析思路。在EEG研究中采用时频域上的数据分析方法,进一步探索冲突适应的神经机制以形成更系统的理论解释。采用时频分析对EEG数据进行时频转换,能够在时频域上清晰地展现冲突适应的神经振荡过程。因为这种方法能更全面的利用大脑执行认知控制的信息,所以时频域上的研究结果可能会对冲突适应的研究提供更具说服力的证据。
唐丹丹, 刘培朵, 陈安涛(2012). 冲突观察能诱发冲突适应. 心理学报, 44期, 295-303.
唐丹丹, 陈安涛(2012). 冲突观察所诱发的冲突适应: ERP研究. 中国科学:生命科学, 42期, 1110-1117.
Appelbaum, L., Meyerhoff, K., & Woldorff, M. (2009). Priming and backward influences in the human brain: Processing interactions during the Stroop interference effect. Cerebral Cortex, 19, 2508- 2521.
Barch, D. M., Braver, T. S., Akbudak, E., Conturo, T., Ollinger, J., & Snyder, A. (2001). Anterior cingulate cortex and response conflict: Effects of response modality and processing domain. Cerebral Cortex, 11, 837-848.
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624-652.
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539-546.
Botvinick, M. M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402, 179-180.
Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747-749.
Carter, C. S., & van Veen, V. (2007). Anterior cingulate cortex and conflict detection: an update of theory and data. Cognitive, Affective, & Behavioral Neuroscience, 7, 367-379.
Casey, B., Thomas, K. M., Welsh, T. F., Badgaiyan, R. D., Eccard, C. H., Jennings, J. R., et al. (2000). Dissociation of response conflict, attentional selection, and expectancy with functional magnetic resonance imaging. Proceedings of the National Academy of Sciences, 97, 8728-8733.
Cavanagh, J. F., Cohen, M. X., & Allen, J. J. B. (2009). Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring. The Journal of Neuroscience, 29, 98-105.
Cavanagh, J. F., Frank, M. J., Klein, T. J., & Allen, J. J. B. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 49, 3198-3209.
Cavanagh, J. F., Zambrano-Vazquez, L., & Allen, J. J. B. (2011). Theta lingua franca: A common mid-frontal substrate for action monitoring processes. Psychophysiology, 49, 220-238.
Chen, A., Bailey, K., Tiernan, B. N., & West, R. (2011). Neural correlates of stimulus and response interference in a 2-1 mapping stroop task. International Journal of Psychophysiology, 80, 129-138.
Clayson, P. E., & Larson, M. J. (2011a). Conflict adaptation and sequential trial effects: Support for the conflict monitoring theory. Neuropsychologia, 49, 1953-1961.
Clayson, P. E., & Larson, M. J. (2011b). Effects of repetition priming on electrophysiological and behavioral indices of conflict adaptation and cognitive control. Psychophysiology, 48, 1621-1630.
Cohen, M. X. (2011). It’s about Time. Frontiers in Human Neuroscience, 5, 2.
Cohen, M. X., & Cavanagh, J. F. (2011). Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict. Frontiers in Psychology, 2, 30.
Cohen, M. X., Ridderinkhof, K. R., Haupt, S., Elger, C. E., & Fell, J. (2008). Medial frontal cortex and response conflict: Evidence from human intracranial EEG and medial frontal cortex lesion. Brain Research, 1238, 127-142.
Correa, Á., Rao, A., & Nobre, A. C. (2009). Anticipating conflict facilitates controlled stimulus-response selection. Journal of Cognitive Neuroscience, 21, 1461-1472.
Danielmeier, C., Wessel, J. R., Steinhauser, M., & Ullsperger, M. (2009). Modulation of the error-related negativity by response conflict. Psychophysiology, 46, 1288-1298.
Di Pellegrino, G., Ciaramelli, E., & Ladavas, E. (2007). The regulation of cognitive control following rostral anterior cingulate cortex lesion in humans. Journal of Cognitive Neuroscience, 19, 275-286.
Donohue, S. E., Liotti, M., Perez, R., & Woldorff, M. G. (2011). Is conflict monitoring supramodal? Spatiotemporal dynamics of cognitive control processes in an auditory Stroop task. Cognitive, Affective, & Behavioral Neuroscience, 12, 1-15.
Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 7, 380-390.
Egner, T. (2011). Right ventrolateral prefrontal cortex mediates individual differences in conflict-driven cognitive control. Journal of Cognitive Neuroscience, 23, 3903-3913.
Egner, T., & Hirsch, J. (2005a). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8, 1784-1790.
Egner, T., & Hirsch, J. (2005b). The neural correlates and functional integration of cognitive control in a Stroop task. NeuroImage, 24, 539- 547.
Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., & Posner, M. I. (2003). Cognitive and brain consequences of conflict. NeuroImage, 18, 42-57.
Floden, D., Vallesi, A., & Stuss, D. T. (2011). Task context and frontal lobe activation in the Stroop task. Journal of Cognitive Neuroscience, 23, 867-879.
Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45, 152-170.
Forster, S. E., Carter, C. S., Cohen, J. D., & Cho, R. Y. (2011). Parametric manipulation of the conflict signal and control-state adaptation. Journal of Cognitive Neuroscience, 23, 923-935.
Franke, C., Reuter, B., Breddin, A., & Kathmann, N. (2009). Response switching in schizophrenia patients and healthy subjects: Effects of the inter-response interval. Experimental Brain Research, 196, 429- 438.
Freitas, A. L., Banai, R., & Clark, S. L. (2009). When cognitive control is calibrated: Event-related potential correlates of adapting to information-processing conflict despite erroneous response preparation. Psychophysiology, 46, 1226-1233.
Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121, 480-506.
Grinband, J., Savitsky, J., Wager, T. D., Teichert, T., Ferrera, V. P., & Hirsch, J. (2010). The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood. NeuroImage, 57, 303-311.
Hanslmayr, S., Pastötter, B., Bäuml, K. H., Gruber, S., Wimber, M., & Klimesch, W. (2008). The electrophysiological dynamics of interference during the Stroop task. Journal of Cognitive Neuroscience, 20, 215-225.
Iyer, A., Lindner, A., Kagan, I., & Andersen, R. A. (2010). Motor preparatory activity in posterior parietal cortex is modulated by subjective absolute value. PLoS Biology, 8, Article ID: e1000444.
Kanwisher, N. (2000). Domain specificity in face perception. Nature Neuroscience, 3, 759-763.
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience, 17, 4302-4311.
Kenner, N. M., Mumford, J. A., Hommer, R. E., Skup, M., Leibenluft, E., & Poldrack, R. A. (2010). Inhibitory motor control in response stopping and response switching. The Journal of Neuroscience, 30, 8512-8518.
Kerns, J. G. (2006). Anterior cingulate and prefrontal cortex activity in an FMRI study of trial-to-trial adjustments on the Simon task. NeuroImage, 33, 399-405.
Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023-1026.
Kerns, J. G., Cohen, J. D., MacDonald III, A. W., Johnson, M. K., Stenger, V. A., Aizenstein, H., et al. (2005). Decreased conflict-and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. American Journal of Psychiatry, 162, 1833-1839.
Kopp, B., & Rist, F. (1999). An event-related brain potential substrate of disturbed response monitoring in paranoid schizophrenic patients. Journal of Abnormal Psychology, 108, 337-346.
Larson, M. J., Farrer, T. J., & Clayson, P. E. (2011). Cognitive control in mild traumatic brain injury: Conflict monitoring and conflict adaptation. International Journal of Psychophysiology, 82, 69-78.
Larson, M. J., Kaufman, D. A. S., & Perlstein, W. M. (2009a). Conflict adaptation and cognitive control adjustments following traumatic brain injury. Journal of the International Neuropsychological Society, 15, 927-937.
Larson, M. J., Kaufman, D. A. S., & Perlstein, W. M. (2009b). Neural time course of conflict adaptation effects on the Stroop task. Neuropsychologia, 47, 663-670.
Liotti, M., Woldorff, M. G., Perez III, R., & Mayberg, H. S. (2000). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38, 701-711.
Liston, C., Matalon, S., Hare, T. A., Davidson, M. C., & Casey, B. (2006). Anterior cingulate and posterior parietal cortices are sensitive to dissociable forms of conflict in a task-switching paradigm. Neuron, 50, 643-653.
Luu, P., Tucker, D. M., & Makeig, S. (2004). Frontal midline theta and the error-related negativity: Neurophysiological mechanisms of action regulation. Clinical Neurophysiology, 115, 1821-1835.
MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163-203.
Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognitive Sciences, 8, 204- 210.
Mansouri, F. A., Tanaka, K., & Buckley, M. J. (2009). Conflict-induced behavioural adjustment: A clue to the executive functions of the prefrontal cortex. Nature Reviews Neuroscience, 10, 141-152.
Markela-Lerenc, J., Ille, N., Kaiser, S., Fiedler, P., Mundt, C., & Weisbrod, M. (2004). Prefrontal-cingulate activation during executive control: Which comes first? Cognitive Brain Research, 18, 278-287.
Matsumoto, K., & Tanaka, K. (2004). Conflict and cognitive control. Science, 303, 969-970.
Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6, 450-452.
Milham, M., Banich, M., Claus, E., & Cohen, N. (2003). Practicerelated effects demonstrate complementary roles of anterior cingulate and prefrontal cortices in attentional control. NeuroImage, 18, 483-493.
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual review of neuroscience, 24, 167-202.
Mitchell, R. L. C. (2010). Linear increases in BOLD response associated with increasing proportion of incongruent trials across time in a colour Stroop task. Experimental Brain Research, 203, 193-204.
Nee, D. E., Wager, T. D., & Jonides, J. (2007). Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cognitive, Affective, & Behavioral Neuroscience, 7, 1-17.
Nieuwenhuis, S., Stins, J. F., Posthuma, D., Polderman, T. J. C., Boomsma, D. I., & de Geus, E. J. (2006). Accounting for sequential trial effects in the flanker task: Conflict adaptation or associative priming? Memory & Cognition, 34, 1260-1272.
Nigbur, R., Ivanova, G., & Stürmer, B. (2011). Theta power as a marker for cognitive interference. Clinical Neurophysiology, 122, 2185- 2194.
Peng, W., Hu, L., Zhang, Z., & Hu, Y. (2012). Causality in the association between P300 and alpha event-related desynchronization. PLoS One, 7, Article ID: e34163.
Perlstein, W. M., Larson, M. J., Dotson, V. M., & Kelly, K. G. (2006). Temporal dissociation of components of cognitive control dysfunction in severe TBI: ERPs and the cued-Stroop task. Neuropsychologia, 44, 260-274.
Pfurtscheller, G., & Lopes da Silva, F. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110, 1842-1857.
Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128-2148.
Raghavachari, S., Lisman, J. E., Tully, M., Madsen, J. R., Bromfield, E., & Kahana, M. J. (2006). Theta oscillations in human cortex during a working-memory task: Evidence for local generators. Journal of Neurophysiology, 95, 1630-1638.
Reuter, B., Philipp, A. M., Koch, I., & Kathmann, N. (2006). Effects of switching between leftward and rightward pro-and antisaccades. Biological Psychology, 72, 88-95.
Roelofs, A., van Turennout, M., & Coles, M. G. (2006). Anterior cingulate cortex activity can be independent of response conflict in Stroop-like tasks. Proceedings of the National Academy of Sciences of the United States of America, 103, 13884-13889.
Salo, R., Ursu, S., Buonocore, M. H., Leamon, M. H., & Carter, C. (2009). Impaired prefrontal cortical function and disrupted adaptive cognitive control in methamphetamine abusers: A functional magnetic resonance imaging study. Biological Psychiatry, 65, 706-709.
Sheth, S. A., Mian, M. K., Patel, S. R., Asaad, W. F., Williams, Z. M., Dougherty, D. D., et al. (2012). Human dorsal anterior cingulate cor- tex neurons mediate ongoing behavioural adaptation. Nature, 488, 218-221.
Silton, R. L., Heller, W., Towers, D. N., Engels, A. S., Spielberg, J. M., Edgar, J. C., et al. (2010). The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control. NeuroImage, 50, 1292-1302.
Stürmer, B., Leuthold, H., Soetens, E., Schröter, H., & Sommer, W. (2002). Control over location-based response activation in the Simon task: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 28, 1345-1363.
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643-662.
Tiesinga, P., Fellous, J. M., & Sejnowski, T. J. (2008). Regulation of spike timing in visual cortical circuits. Nature Reviews Neuroscience, 9, 97-107.
Trujillo, L. T., & Allen, J. J. B. (2007). Theta EEG dynamics of the error-related negativity. Clinical Neurophysiology, 118, 645-668.
Tsujimoto, T., Shimazu, H., & Isomura, Y. (2006). Direct recording of theta oscillations in primate prefrontal and anterior cingulate cortices. Journal of neurophysiology, 95, 2987-3000.
van Veen, V., & Carter, C. S. (2002). The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiology & Behavior, 77, 477-482.
van Veen, V., & Carter, C. S. (2006). Conflict and cognitive control in the brain. Current Directions in Psychological Science, 15, 237-240.
Wang, C., Ulbert, I., Schomer, D. L., Marinkovic, K., & Halgren, E. (2005). Responses of human anterior cingulate cortex microdomains to error detection, conflict monitoring, stimulus-response mapping, familiarity, and orienting. The Journal of Neuroscience, 25, 604-613.
Wang, L., Liu, X., Guise, K. G., Knight, R. T., Ghajar, J., & Fan, J. (2010). Effective connectivity of the fronto-parietal network during attentional control. Journal of Cognitive Neuroscience, 22, 543-553.
Wang, X. J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiological Reviews, 90, 1195- 1268.
West, R. (2003). Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks. Neuropsychologia, 41, 1122-1135.
West, R., & Alain, C. (1999). Event-related neural activity associated with the Stroop task. Cognitive Brain Research, 8, 157-164.
West, R., & Alain, C. (2000). Evidence for the transient nature of a neural system supporting goal-directed action. Cerebral Cortex, 10, 748-752.
West, R., Bowry, R., & McConville, C. (2004). Sensitivity of medial frontal cortex to response and nonresponse conflict. Psychophysiology, 41, 739-748.
West, R., Choi, P., & Travers, S. (2010). The influence of negative affect on the neural correlates of cognitive control. International Journal of Psychophysiology, 76, 107-117.
West, R., Jakubek, K., Wymbs, N., Perry, M., & Moore, K. (2005). Neural correlates of conflict processing. Experimental Brain Research, 167, 38-48.
Womelsdorf, T., Schoffelen, J. M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., et al. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316, 1609-1612.
Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111, 931-959.
Zhang, Z., Hu, L., Hung, Y., Mouraux, A., & Iannetti, G. (2012). Gamma-band oscillations in the primary somatosensory cortex—A direct and obligatory correlate of subjective pain intensity. The Journal of Neuroscience, 32, 7429-7438.
Zysset, S., Müller, K., Lohmann, G., & Von Cramon, D. Y. (2001). Color-word matching Stroop task: separating interference and response conflict. NeuroImage, 13, 29-36.