Systemic Risk Measurement of China’s New Energy Vehicle Industry Based on Industry Chain Perspective
Under the macro background of “double carbon”, the new energy automobile industry chain is an important engine for China’s high-quality economic development, and an important industry for national economy and people’s livelihood. In recent years, the new energy automobile industry chain is facing the dual challenges of uncertainty in the external economic environment and internal two-way risks, which seriously threaten its sustainable development. Based on the daily yield data from 2018 to 2023, this paper empirically studies the systemic risk status of each industry and market in the new energy vehicle industry chain under different scenarios. It is found that there is systemic risk in the new energy vehicle industry chain, and the fluctuation of industry yields is procyclical. The ability of each industry to withstand risk varies in each period, and when the new energy vehicle market yield is in extreme downturn, the middle and upstream industries with higher correlation with the market have higher level of spillover to the whole market, and the downstream industries have lower level of risk spillover. Based on the conclusions of the study, this paper puts forward suggestions based on different market players to improve the control of Chinese enterprises in the global new energy industry chain, reduce the systemic risk of the investment portfolio, maintain the stability and foresight of the policy, and implement the incentive policies, aiming to promote the healthy, stable and sustainable development of the new energy vehicle industry.
New Energy Vehicle Industry Chain
自2008年美国金融危机以来,金融业的系统性风险受到各国政府和研究人员的广泛关注。与金融行业相比,新能源汽车产业链系统性风险的研究则相对有限,新能源汽车产业链作为近年来中国经济高质量发展的重要引擎,是国计民生的重要行业,其系统性风险的识别与研究对产业链健康稳定发展具有重要意义。
在“双碳”宏观背景下,支持新能源汽车产业加快发展是我国由汽车大国向汽车强国转型的重要途径,是实现我国碳达峰、碳中和目标的有效路径
本文采用如下研究思路:首先,在梳理相关文献及研究的基础上,确定测度新能源车产业链系统性风险的模型;其次,对新能源车产业链系统性风险,运用了ΔCoVaR和MES两种方法,兼顾“从下至上”和“从上往下”两种分析视角,依据极端事件将研究时段细分为三个阶段,以系统地评估新能源车产业链在不同情境下的系统性风险排名状况。最后,针对新能源产业链行业的企业、投资者、政府部门提出应对新能源车产业链系统性风险的建议。本文的研究重点包括两个方面:一是推导测度新能源车产业链系统性风险的模型;二是度量不同时间阶段新能源车产业链系统性风险溢出程度,并据此针对新能源产业链企业、投资者、政府部门提出建议,以促进新能源车产业链的可持续发展。根据指数构建的标准方法,本文采用股票的市值占比作为其在所属行业内权重的决定因素。
和已有研究相比,本文的贡献体现在如下三个方面:(1) 关注于新能源车产业链的系统性风险,通过文献梳理及实证研究,证明新能源车产业链存在系统性风险。(2) 通过48支股票,根据指数股票构建的方法,根据其市值在行业总市值中的占比,计算得到7个行业指数构建变量,这种研究方法能够更准确地捕捉新能源汽车产业链各行业的整体表现及上中下游的变化程度,为上市公司、投资者、政策制定者提供了更为精确的决策参考,揭示新能源汽车产业链各行业在不同时间段的风险溢出情况,为推进新能源汽车产业链可持续发展提供新的思考方向。(3) 结合ΔCoVaR和MES两种方法,兼顾“从下至上”和“从上往下”两种分析视角,从而更为细致地评估出不同时期新能源汽车产业链行业对于整个新能源汽车系统的影响及行业自身的风险承受能力,为制定风险应对策略提供了更为全面的依据。
产业链是由价值链、企业链、供需链、空间链构成的多维度网络,基于产业部门间的技术经济联系自然形成。它描绘出紧密相依的企业群,共同推动产业升级,受政府与市场双重调控
近年来,学者们主要从三个维度探讨了新能源汽车产业链。
第一,新能源汽车产业链结构分析的维度。有些学者认为新能源汽车产业链是在传统汽车产业链的基础上进行了拓展和深化,增加了对电池、电机、电控系统等关键零部件领域的重点投入与研发。因此,他们遵循着“从原材料供应到零部件制造,再到整车组装”的递进逻辑,对新能源汽车产业链进行全面而系统的解构分析
第二,新能源汽车产业链中具体产业发展的维度。罗贞礼(2016)以锂离子动力电池产业为核心,从横向的产学研合作、纵向的专业化细分以及政策导向三个维度,对其进行了详尽的分析和探讨
第三,新能源汽车产业链发展现状与优化。刘燕玲(2013)通过综合运用熵权法和模糊综合评价法构建多维度的量化分析模型,对北京市纯电动汽车产业链的综合性能和潜在风险进行全面、系统地评估
学术界在新能源汽车产业链方面的研究,主要聚焦于产业链的组成要素、结构升级以及优化改造等关键领域。对于新能源车产业链的构造与产业链细分行业已达成共识,但对于新能源汽车产业链的风险较少有文献提及,而新能源汽车产业链涉及多个环节,包括上游的原材料供应、零部件制造,中游的整车制造,以及下游的充电设施、运营服务等,每个环节都存在着潜在的风险。
系统性风险是指某一事件引发整个系统严重不稳定或崩溃的可能性,主要表现为风险在行业间的相互传染与扩散。系统性风险的核心特征体现为其显著的溢出效应和高度传染性,一个极端事件对整个系统造成冲击,并且该极端事件也让第三方承担额外的成本
外部环境的不确定性会加强新能源车产业链各行业之间的风险外溢效应。A. Shmidt (2015)分析了外部环境的不确定性对工业企业财务和经济可持续性的影响
新能源汽车产业链各行业之间存在强烈风险传染,其中包括原材料供给风险、财务风险、政策风险、供应链风险等,从而对整个产业链造成负面影响。王昶等(2018)指出新能源汽车井喷式的发展对关键原材料形成了强劲的需求,致使关键原材料的供给风险进一步加大进而制约新能源汽车产业的发展
关于外部环境的不稳定性加剧新能源车产业链中各行业之间风险的外溢效应学界达成一致观点,其中包含中美贸易摩擦、新冠疫情、补贴政策等方面因素。同时,新能源汽车产业链内部各行业也存在风险传染,进而影响整个产业链的稳定性。综合系统性风险的定义与特征,可以初步判定新能源汽车产业链存在系统性风险,但学界对于新能源汽车产业链系统性风险的概念未达成一致,研究相对较少。
系统性风险溢出效应的研究多利用市场数据建立金融风险模型进行分析。国内外学者主要从两个角度来进行此类问题的分析:一是“从下至上”的视角,即从单个机构所引发的系统性风险来评估该机构的系统重要性。二是“从上往下”的视角,从整体金融系统的系统性风险按照权重分配给各个金融机构后,评估各机构的系统重要性。在公开市场数据的市场分析框架中,边际预期损失(MES)和条件在险价值溢出度(ΔCoVaR)是两种常用的代表性方法。
Engle (2011)引入了DCC-GARCH模型来捕捉风险传染的时变特性,从而评估不同市场或机构间风险传播的动态变化
国内ΔCoVaR方法和MES方法在系统性风险的测度中主要应用于金融行业,包括银行业、保险业、证券业等。赵进文等人(2013)通过基于DCC-GARCH模型的比较分析,在理论和实证两个维度进行比较分析,发现MES值和ΔCoVaR值存在明显的相关性,但两者在评估系统性风险的视角上有所不同
近年来,国内学者使用DCC-GARCH模型研究行业间的溢出效应逐渐增多。王周伟等(2014)对3种计算方法进行比较研究,发现DCC-GARCH模型能更好地刻画非线性的时变相关性
关于系统性风险溢出效应的研究主要利用市场数据,通过构建金融风险模型进行深入分析。研究视角可划分为“自下而上”与“自上而下”两种,前者聚焦于单个机构,评估其系统重要性;后者则从宏观金融系统层面出发,根据权重将风险分配至各个机构。在此过程中,主要的分析方法包括边际预期短缺(MES)和条件风险价值变化(ΔCoVaR)。用动态条件相关的DCC模型可以更好地刻画行业间的溢出效应。但这些方法主要应用于金融行业的系统性风险测度,对于新能源车产业链各行业与市场之间的系统性风险测度研究较少。
综上所述,经过对国内外研究文献的深入剖析,本文着重于关注新能源车产业链的系统性风险度量,采用DCC-GARCH模型测度市场与各行业的波动率与动态相关系数,运用ΔCoVaR和MES两种方法,兼顾“从下至上”和“从上往下”两种分析视角,依据极端事件将研究时段细分为三个阶段,以系统地评估新能源车产业链在不同情境下的系统性风险状况,从而为产业链的稳定发展和风险管理提供有力的决策支持。
本文基于Brownlees和Engle (2011)
(1)
其中, 和 是新能源市场指数收益率和新能源车产业链行业收益率在t时刻的动态波动率。 和 分别是新能源市场指数收益率和新能源车产业链行业收益率在t时刻的动态波动率的估计残差。 是市场收益率和新能源车行业收益率在t时刻的动态相关系数。 表示均值为0,方差为1,协方差为0的扰动项。F为一个未指定具体分布的二变量分布过程。
有研究表明,新能源市场指数收益率与新能源车行业收益率在t时刻的动态波动率估计残差 和 之间存在线性关系时,是进行MES方法和ΔCoVaR方法理论比较的前提。故进行补充条件假设条件 和 ,即市场收益率和新能源行业收益率的动态波动率的估计残差 和 相互独立且服从标准正态分布。
传统的风险度量方法VaR是指在一定置信水平下,某一金融机构或市场面临的最大可能损失。设 表示新能源市场指数与新能源车产业链企业的风险损失,则t时刻的风险价值可表示为
(2)
Adrian和Brunnermeier (2009)
(3)
根据Sylvain和Gilbert (2012)
(4)
其中, 表示新能源产业链企业处于正常波动水平下,新能源行业系统面临的最大可能风险。
基于市场波动模型框架,ΔCoVaR方法的理论模型为:
(5)
再根据在险价值(VaR)和条件在险价值(CoVaR)的关系,即当 时,可以将式(5)表达成:
(6)
根据上述ΔCoVaR理论可计算溢出风险价值,具体表达式如下:
(7)
ΔCoVaR值越大说明新能源产业链行业对新能源系统性风险的贡献越大,一旦发生风险事件,越容易对整体系统产生较大影响。
根据Acharya (2010)
(8)
其中,C是基于市场收益率的分布决定的系统性风险临界值,等于 。由前文假设,估计残差 和 仅存在线性关系,所以 ,则MES模型可表示为新能源市场指数收益率和新能源车产业链行业收益率在t时刻的动态波动率 、新能源车产业链行业收益率与市场收益率的动态相关系数 、市场收益率分布的尾部期望 的函数:
(9)
经过推导得到的理论模型揭示了以下结构特征:当市场面临财务困境,即市场收益率落入其分布的左尾极端区域时,新能源车产业链行业收益率分布的边际预期损失(MES)值会与 度量的系统性风险呈现出正比关系。比例系数为市场收益率分布的尾部期望值。进一步地,新能源车产业链行业收益率对市场收益率的变动反应越敏感,则通过MES值所度量的该行业的系统性风险敏感度越大。
MES方法和ΔCoVaR方法的理论模型的核心在于新能源车产业链行业收益率的动态波动率、行业与新能源市场指数收益率之间的动态相关系数,以及收益率分布三者的函数。本文的模型估计主要聚焦于准确计算这三个关键参数的数值。
鉴于MES方法及ΔCoVaR方法均基于公开市场数据来进行风险度量,本文在模型估计过程中主要采用公开市场的收益率数据。这些收益率数据属于金融时间序列数据,具备金融市场的典型特征,即动态波动率和动态相关系数均随时间变化,并且表现出随机性。为了准确捕捉这些时变和随机的特性,本文采用金融时间序列模型来估算所需的参数。通过这种方式确保MES方法和ΔCoVaR方法在风险度量中的有效性和准确性。
本文所采用的是DCC-GARCH综合模型,该模型结合了GARCH (广义自回归条件异方差)模型和DCC (动态条件相关)模型的特点。首先,GARCH模型相较于传统的多元线性回归模型,对估计残差进行了建模,使得GARCH模型在处理波动性相关的问题时能更准确地描述和预测金融时间序列数据的波动性。其次,DCC模型在评估系统性风险关联状况时,特别注重“时间”维度的影响。相较于滚动窗口方法,DCC模型能够更有效地捕捉系统性风险在时间上的动态变化,提供更准确的系统性风险度量。最后,DCC-GARCH模型不仅能够评估单期的系统性风险,还能够预测未来一段时间内的系统性风险情况。这种预测能力使得模型在宏观审慎监管中具有重要的应用价值。综上所述,本文采用DCC-GARCH模型能够全面评估新能源车产业链的系统性风险。
(1) 新能源车产业链企业收益率分布的在险价值的 估计方法
根据VaR的定义,在序列分布满足或近似服从既定的分布时,新能源车产业链企业的VaR计算式为
(10)
其中, 为ARMA-GARCH类模型估计的均值, 为DCC-GARCH模型计算得到的动态波动率序列;根据中心极限定理,Q(q)为置信水平为 时的新能源产业链企业收益率分布的分位数,通常采用5%分位数(取q = 0.05)。
(2) 市场收益率分布的尾部期望 的估计方法
由于系统性风险事件的临界值C与市场收益率分布相关。本文假设市场收益率处于极端情况的临界值C和 相等,从而模型使更简便地估计市场收益率在极端情况下的表现。
市场收益率分布的尾部条件期望的估计方法有两种。第一种方法是采用非参数核估计,第二种方法则是将处于临界值C之下的收益率的动态波动率的估计残差直接求均值作为其尾部条件期望。为了便于模型估计,本文选择第二种方法,从而更直观地反映市场收益率在极端情况下的平均潜在损失。
主流的新能源车指数有5种,中证新能源指数(399808)、中证新能源汽车产业指数(930997)、国证新能源汽车指数(399417)、中证新能源汽车指数(399976)、国证新能源电池指数(980032)。五个指数均整个沪深A股作为样本空间,从中选择样本股。但是挑选样本股规则和权重设置上略有差别。国证新能源车电池指数更偏向中上游,中证新能源汽车指数更偏向全产业链。目前从我国新能源汽车相关企业的发展趋势看,上、中游供应确定性需求更强,尤其是产业链中游的电池技术未来发展前景广阔;而产业链下游的整车制造商,面临更为严峻的车品竞争。通过对比五个指数近5年的收盘价走势及行业前景,最终本文选择收益率走势最好的国证新能源电池指数,见
截至2023年12月31日,我国现存与新能源汽车相关企业106万余家,故本文参考杨蓉(2011)
产业链 |
行业 |
上游行业 |
锂矿 |
其他金属 |
|
电解液 |
|
隔膜 |
|
中游行业 |
电池 |
电路系统 |
|
下游行业 |
乘用车 |
全样本时间跨度为2018年1月2日到2023年12月29日,全样本时期共1457个交易日。本文参照危机事件开始的时点为依据,将样本数据划分为3个阶段,2018年1月2日至2019年12月31日为中美贸易摩擦期间,2020年1月2日至2021年12月31日为经济波动阶段,2022年1月4日至2023年12月31日为经济恢复阶段。第一个阶段共488个交易日,第二个阶段共487个交易日,第三个阶段共485个交易日,见
时间 |
阶段 |
2018年1月2日~2019年12月31日 |
中美贸易摩擦 |
2020年1月2日~2021年12月31日 |
新冠疫情 |
2022年1月4日~2023年12月31日 |
经济恢复 |
均值 |
最大值 |
最小值 |
标准差 |
偏度 |
峰度 |
|
新能源车指数 |
0.0427 |
8.1810 |
−8.1097 |
2.2022 |
0.0978 |
4.2078 |
锂矿 |
0.0943 |
9.9397 |
−10.0390 |
2.9229 |
0.1808 |
4.1347 |
其他金属 |
−0.0375 |
10.4845 |
−11.4763 |
2.8070 |
−0.0466 |
4.6444 |
电解液 |
0.1140 |
9.2946 |
−7.2166 |
2.1411 |
0.6160 |
4.6717 |
隔膜 |
0.0778 |
50.9400 |
−46.0308 |
7.5050 |
0.2708 |
11.0257 |
电池 |
0.1397 |
15.4123 |
−9.4243 |
2.5917 |
0.4558 |
5.0332 |
电路系统 |
0.1357 |
20.7546 |
−51.7236 |
4.0328 |
−1.0378 |
24.4567 |
乘用车 |
0.0272 |
7.5246 |
−8.8955 |
1.9689 |
0.2977 |
4.7167 |
尤其是锂矿和电池行业与其他行业的均值相关系数较大,显示出这两个行业在新能源汽车产业链中具有较大的影响力,它们的市场动态对整个产业链具有重要影响。相比之下,乘用车行业与产业链上其他行业的相关系数较小,这表明乘用车行业与其他行业的关联性相对较低。这可能也表明,乘用车行业在面对市场波动时,其风险溢出水平可能也相对较低,即乘用车行业的风险更可能局限于行业内部。
市场指数 |
锂矿 |
其他金属 |
电解液 |
隔膜 |
电池 |
电路系统 |
乘用车 |
|
市场指数 |
1 |
|||||||
锂矿 |
0.823*** |
1 |
||||||
其他金属 |
0.750*** |
0.703*** |
1 |
|||||
电解液 |
0.658*** |
0.519*** |
0.405*** |
1 |
||||
隔膜 |
0.635*** |
0.453*** |
0.377*** |
0.543*** |
1 |
|||
电池 |
0.845*** |
0.598*** |
0.524*** |
0.551*** |
0.652*** |
1 |
||
电路系统 |
0.556*** |
0.405*** |
0.398*** |
0.396*** |
0.434*** |
0.501*** |
1 |
|
乘用车 |
0.550*** |
0.432*** |
0.438*** |
0.331*** |
0.360*** |
0.443*** |
0.440*** |
1 |
注:***、**、*分别表示在显著水平1%、5%、10%上显著。
金融时间序列数据分析领域的研究指出,运用DCC-GARCH模型来分析收益率数据时,必须确保数据具备非随机性、平稳性和异方差性这三个关键特性。因此,在构建模型并进行实证分析之前,需要对数据样本的布特性进行严格的检验,确保实证分析过程的稳健性与可信性。
卡方统计量 |
P值 |
是否通过检验 |
|
新能源车指数 |
90.8735 |
<2.2e−16 |
通过 |
锂矿 |
86.1006 |
<2.2e−16 |
通过 |
其他金属 |
164.6852 |
<2.2e−16 |
通过 |
电解液 |
261.8008 |
<2.2e−16 |
通过 |
隔膜 |
3928.1184 |
<2.2e−16 |
通过 |
电池 |
301.3965 |
<2.2e−16 |
通过 |
电路系统 |
28211.0802 |
<2.2e−16 |
通过 |
乘用车 |
200.4418 |
<2.2e−16 |
通过 |
从
在运用DCC-GARCH模型进行分析时,要求收益率序列需具备平稳性。采用单位根检验法(ADF)来检验各收益率序列的平稳性,检验结果表明各收益率序列P值均显著低于0.01的显著性水平,各序列均满足平稳性的要求,见
单位根检验 |
是否通过检验 |
|
新能源车指数 |
−37.2913 |
通过 |
锂矿 |
−36.1719 |
通过 |
其他金属 |
−37.6628 |
通过 |
电解液 |
−25.1103 |
通过 |
隔膜 |
−35.3014 |
通过 |
电池 |
−37.6202 |
通过 |
电路系统 |
−36.9361 |
通过 |
乘用车 |
−37.6439 |
通过 |
为了验证新能源车市场指数及新能源车产业链行业收益率序列的ARMA模型估计残差是否存在异方差性,本文采用异方差效应(ARCH)检验。从
LM统计量 |
P值 |
|
新能源车指数 |
28.3517 |
0.0000 |
锂矿 |
21.4143 |
0.0000 |
其他金属 |
39.9516 |
0.0000 |
电解液 |
49.1104 |
0.0000 |
隔膜 |
121.3529 |
0.0000 |
电池 |
12.9617 |
0.0015 |
电路系统 |
6.0213 |
0.0493 |
乘用车 |
49.2874 |
0.0000 |
基于前期DCC-GARCH模型估计得到的参数,代入到动态波动率的计算公式中,求出各收益率序列的动态波动率,对各收益率序列的动态波动率作图,得
从
通过DCC模型的应用可以直接估计出新能源汽车市场收益率序列与新能源车产业链各行业收益率序列之间的动态相关系数,对各序列的动态相关系数作图,得
由
分时间段来看,中美贸易摩擦对电池和隔膜行业的影响尤为显著,这可能与这些行业在供应链中的特定位置和依赖关系有关。而电路系统行业则受到新冠疫情的较大影响,其与市场收益率的动态相关系数波动较大,反映了疫情对供应链和消费者需求的冲击。从行业角度来看,锂矿行业的收益率相关系数在所有行业中最高,长期保持在(0.9, 1)的高位区间,即使在2020年左右略有下降至0.7左右,其相关性依然在同期的行业中处于领先地位,这与锂矿作为新能源车产业链上游原材料的重要地位有关,其价格波动直接影响到中下游行业的成本和市场表现。相对而言,下游行业如乘用车,其与市场收益率的相关系数波动幅度较小,这可能表明下游行业与新能源车市场的直接关联性较小,其市场表现更多地受到消费者需求、市场竞争等其他因素的影响。
根据
从整体上来看,全球卫生紧急状态时期新能源汽车产业链各行业对市场的整体风险溢出相较于中美贸易摩擦时期和经济恢复时期更为显著,这确实表明全球卫生紧急状态对整个新能源车产业链造成了重大的冲击,这种冲击可能源于疫情导致的供应链中断、消费者需求下降以及生产和销售的不确定性。在新能源车产业链中,不同环节对系统性风险的溢出程度有所不同。下游的乘用车行业和中游的电路系统行业在样本统计期间表现出较小的风险溢出度,并且排名相对稳定,这说明这两个行业具有较强的风险隔离性,即它们相对独立于其他环节,受外部冲击的影响较小。相比之下,处于产业链上游的锂矿、隔膜以及核心行业的电池对系统性风险的溢出程度较大。这些行业在新能源车产业链中占据关键位置,与其他环节存在紧密的上下游联系。因此,当这些行业发生极端情况时,如原材料价格暴涨、供应链中断或技术瓶颈等,都会对整个产业链造成显著冲击。特别是锂矿、隔膜和电池行业,它们作为新能源车动力系统的核心组成部分,其稳定性和可持续性对整个产业的健康发展至关重要。
2018.01~2019.12 |
2020.01~2021.12 |
2022.01~2023.12 |
||||
ΔCoVaR |
排序 |
ΔCoVaR |
排序 |
ΔCoVaR |
排序 |
|
锂矿 |
2.7151 |
1 |
3.5609 |
2 |
2.4635 |
4 |
其他金属 |
2.5691 |
2 |
3.1549 |
4 |
2.2316 |
5 |
电池 |
2.2417 |
3 |
3.7669 |
1 |
2.9248 |
1 |
隔膜 |
2.2390 |
4 |
3.2627 |
3 |
2.6565 |
3 |
电路系统 |
2.1880 |
5 |
2.5184 |
6 |
1.9029 |
7 |
乘用车 |
1.5299 |
6 |
2.3240 |
7 |
1.9564 |
6 |
电解液 |
1.1039 |
7 |
3.1111 |
5 |
2.5006 |
3 |
根据
2018.01~2019.12 |
2020.01~2021.12 |
2022.01~2023.12 |
||||
MES均值 |
排序 |
MES均值 |
排序 |
MES均值 |
排序 |
|
锂矿 |
4.2088 |
2 |
6.2787 |
1 |
3.515 |
1 |
其他金属 |
4.9161 |
1 |
4.9577 |
4 |
2.6811 |
4 |
电池 |
3.0423 |
4 |
5.2639 |
3 |
3.3797 |
2 |
隔膜 |
4.1008 |
3 |
4.5375 |
5 |
3.0611 |
3 |
电路系统 |
2.4709 |
5 |
5.8831 |
2 |
1.7412 |
7 |
乘用车 |
1.7552 |
6 |
3.0337 |
7 |
2.1855 |
6 |
电解液 |
0.5415 |
7 |
3.416 |
6 |
2.4102 |
5 |
本文基于DCC-GARCH模型,运用ΔCoVaR方法和MES方法,在“时间”和“空间”两个维度上,从“自上而下”和“自下而上”两个视角对我国新能源产业链2018~2023年的系统性风险进行了测度。结论如下:
首先,新能源车产业链存在系统性风险,且行业收益率的波动存在顺周期性。行业的收益率动态波动率与我国宏观经济周期的变化趋势高度一致。当经济环境受到冲击时,各行业的动态波动率较大,风险溢出水平较高;当经济处于恢复阶段时,各行业的收益率的波动较为平稳。
其次,各行业各时期的抵御风险的能力有所不同。当新能源车市场收益率处于极端下跌状况时,在产业链占有重要地位与市场相关性较高的上游行业及电池行业对整个市场的风险溢出水平较高,预期损失较大,抵御风险的能力较差。而下游行业与新能源车市场的关联性较低,在一定程度上有利于隔离风险,其收益率的变动较为平稳。
最后,MES和ΔCoVaR两种方法在评估系统性风险溢出效应时,得到的估计值走势呈现出一致性,但侧重点略有不同。ΔCoVaR侧重于个体风险溢出情况;MES侧重于对系统的影响程度。具体到新能源车产业链中,电路系统行业在全球卫生紧急期间受到了较大的冲击,使得电路系统行业的运营和盈利能力受到了严重影响。然而,通过ΔCoVaR方法的分析,发现电路系统行业对于新能源车市场的风险溢出水平相对较低。另一方面,锂矿行业作为新能源汽车电池的重要原材料供应商,在新能源车市场发生极端情况时,其风险溢出程度会显著加大。通过MES方法的分析,可以更加清晰地看到锂矿行业在新能源车市场中的系统重要性,以及其在极端市场条件下对整个系统的潜在影响。
实证分析结果表明,新能源车市场或其内部各细分行业在面临极端收益率下跌时,均会对整个新能源车产业链构成显著的风险冲击,这种连锁反应可能进一步恶化,加剧新能源车产业链的系统性风险。基于以上分析,本文旨在向市场中的不同主体提出一系列建议,以期推动新能源汽车产业链实现健康、稳定且可持续的发展。
第一,对于新能源车产业链各行业的公司而言,主要是加强自身抵御外部风险的能力,防范因宏观环境及新能源车市场的波动引起的系统性风险。我国新能源车产业链各行业尤其是中上游行业,要积极应对贸易摩擦带来的不利影响,构建国内资源配置和国际资源配置“双轮驱动”的格局,规避个别国家的贸易壁垒,提高中国企业在全球新能源产业链的掌控力。对于电路系统行业特别要强化供应链管理与稳定性,建立稳定、可靠的供应链体系,确保原材料和零部件的稳定供应,与供应商建立长期合作关系,共同应对市场波动和风险。同时各行业也需要建立完善的财务管理体系,确保资金流动性和偿债能力,定期进行财务风险评估,制定应对策略,降低财务风险,合理利用金融工具进行风险管理,如套期保值、汇率锁定等。产业链的上中下游各企业之间也需要建立战略合作关系,加强行业交流和合作,共同应对市场波动和风险,共同推动新能源行业的发展。
第二,对于投资者而言,在构建投资组合和制定对冲策略时,投资者应当深刻洞察宏观经济环境的变化以及跨行业风险溢出的潜在影响。特别是在新能源车产业链中,投资者应给予中上游行业更高的关注度,细致分析这些行业的整体趋势和风险状况,构建一个更为审慎的投资组合,旨在降低潜在风险并提升整体回报。密切关注GDP增长率、就业市场、通货膨胀率和利率变动等宏观经济指标,注意政策和政治稳定性,从而更有利于对当前宏观经济形势的判断。关注于中上游企业的前景的同时也对新能源车产业链中上游行业的竞争格局、技术迭代速度、市场需求变化等因素,评估行业和公司面临的风险进行分析。根据自身的投资目标和风险承受能力,合理配置股票、债券、基金等不同投资品种,保持投资组合的多样性,及时调整投资策略,避免单一行业的风险。可以考虑使用期权、期货等金融工具进行对冲,以降低投资组合的系统性风险,通过分散投资不同行业来降低系统性风险。
第三,对于政策制定者和监管部门而言,主要是防范外部环境对于新能源产业链造成的系统性风险和防范新能源产业链行业造成整个市场的波动风险。在制定宏观政策的过程中,需保持政策稳定性与前瞻性,充分考虑政策对新能源车产业链的影响,落实落地激励政策,把政策优势转化为产业发展优势。可以构建一个新能源车产业发展安全指数,该指数将综合考量新能源对外依存度、核心技术自给能力、市场定价权以及企业竞争力等核心要素,加强对新能源车产业链供应链安全稳定风险的监测和预警,确保在潜在风险出现时能够迅速识别并作出有效应对。鼓励企业、高校和科研机构之间的紧密合作,共同开展新能源技术的研发工作,并推动研发成果的转化和应用,联合攻克关键核心技术和“卡脖子”技术,锻造新能源关键技术长板,从而提升整个产业链的技术水平和竞争力。同时也需要建立健全的市场监管体系,加强对新能源产业链各行业的监管力度,确保市场的公平竞争。对违反法规、标准或存在安全隐患的企业进行严厉打击,维护市场秩序和消费者利益,推动新能源车产业的健康、稳定和可持续发展。