参照既往评估方法,小鼠再灌注24 h后,采用悬挂实验测试握力评估神经功能缺损。具体过程:将小鼠前爪横挂在线上(50 cm × 0.15 cm),3分(两爪均能挂住);2分(一爪能挂住);1分(两爪均不能挂住)。每只小鼠测评3次,取平均值。记录悬挂时间并评分如下:0~4 s (0分)、5~9 s (1分)、10~14 s (2分)、15~19 s (3分)、20~24 s (4分)、25~29 s (5分)、≥30 s (6分)。将各项评分相加,得分越低者,提示神经功能缺损越严重。
Figure 2. Effect of overexpression of miR-133b on blood-brain barrier permeability in acute ischemia-reperfusion mice--图2. 过表达miR-133b对急性缺血再灌注小鼠血脑屏障通透性的影响--Figure 3. Effect of miR-133b agomir on miR-133b expression in brain tissue of acute ischemia-reperfusion mice--图3. miR-133b agomir对急性缺血再灌注小鼠脑组织miR-133b表达的影响--Figure 4. Effect of overexpression of miR-133b on cerebral infarction volume in acute ischemia-reperfusion mice--图4. 过表达miR-133b对急性缺血再灌注小鼠脑梗死体积的影响--Table 2. The effect of overexpression of mir-133b on the neurological deficit score in MCAO/R miceTable 2. The effect of overexpression of mir-133b on the neurological deficit score in MCAO/R mice 表2. mir-133b过表达对MCAO/R小鼠神经功能缺损评分的影响
Table 3. Effects of overexpression of mir-133b on the expression of RhoA, claudin-5, and ZO-1 in the ischemic penumbra of MCAO/R miceTable 3. Effects of overexpression of mir-133b on the expression of RhoA, claudin-5, and ZO-1 in the ischemic penumbra of MCAO/R mice 表3. mir-133b过表达对MCAO/R小鼠缺血半暗带区RhoA、claudin-5、ZO-1表达的影响
References
Xu, L., Yang, X., Gao, H., Wang, X., Zhou, B., Li, Y., et al. (2022) Clinical Efficacy and Safety Analysis of Argatroban and Alteplase Treatment Regimens for Acute Cerebral Infarction. Journal of Neurorestoratology, 10, Article ID: 100017. >https://doi.org/10.1016/j.jnrt.2022.100017
Yu, Y., Zheng, Y., Dong, X., Qiao, X. and Tao, Y. (2022) Efficacy and Safety of Tirofiban in Patients with Acute Ischemic Stroke without Large-Vessel Occlusion and Not Receiving Intravenous Thrombolysis: A Randomized Controlled Open-Label Trial. Journal of Neurorestoratology, 10, Article ID: 100026. >https://doi.org/10.1016/j.jnrt.2022.100026
Huang, H., Chen, L., Chopp, M., Young, W., Robert Bach, J., He, X., et al. (2021) The 2020 Yearbook of Neurorestoratology. Journal of Neurorestoratology, 9, 1-12. >https://doi.org/10.26599/jnr.2021.9040002
Yang, C., Hawkins, K.E., Doré, S. and Candelario-Jalil, E. (2019) Neuroinflammatory Mechanisms of Blood-Brain Barrier Damage in Ischemic Stroke. American Journal of Physiology-Cell Physiology, 316, C135-C153. >https://doi.org/10.1152/ajpcell.00136.2018
Andersen, H.H., Duroux, M. and Gazerani, P. (2014) Micrornas as Modulators and Biomarkers of Inflammatory and Neuropathic Pain Conditions. Neurobiology of Disease, 71, 159-168. >https://doi.org/10.1016/j.nbd.2014.08.003
Bi, C., Zhang, G., Bai, Y., Zhao, B. and Yang, H. (2019) Increased Expression of Mir-153 Predicts Poor Prognosis for Patients with Prostate Cancer. Medicine, 98, e16705. >https://doi.org/10.1097/md.0000000000016705
Shao, H., Dong, D. and Shao, F. (2019) Long Non-Coding RNA Tug1-Mediated Down-Regulation of KLF4 Contributes to Metastasis and the Epithelial-to-Mesenchymal Transition of Colorectal Cancer by miR-153-1. Cancer Management and Research, 11, 8699-8710. >https://doi.org/10.2147/cmar.s208508
Ma, H., Tian, T., Liu, X., Xia, M., Chen, C., Mai, L., et al. (2019) Upregulated Circ_0005576 Facilitates Cervical Cancer Progression via the miR-153/KIF20A Axis. Biomedicine&Pharmacotherapy, 118, Article ID: 109311. >https://doi.org/10.1016/j.biopha.2019.109311
Eyileten, C., Wicik, Z., De Rosa, S., Mirowska-Guzel, D., Soplinska, A., Indolfi, C., et al. (2018) Micrornas as Diagnostic and Prognostic Biomarkers in Ischemic Stroke—A Comprehensive Review and Bioinformatic Analysis. Cells, 7, Article No. 249. >https://doi.org/10.3390/cells7120249
Gong, P., Li, R., Jia, H., Ma, Z., Li, X., Dai, X., et al. (2019) Anfibatide Preserves Blood-Brain Barrier Integrity by Inhibiting TLR4/RhoA/ROCK Pathway after Cerebral Ischemia/reperfusion Injury in Rat. Journal of Molecular Neuroscience, 70, 71-83. >https://doi.org/10.1007/s12031-019-01402-z
Xin, H., Li, Y., Liu, Z., Wang, X., Shang, X., Cui, Y., et al. (2013) MiR-133b Promotes Neural Plasticity and Functional Recovery after Treatment of Stroke with Multipotent Mesenchymal Stromal Cells in Rats via Transfer of Exosome-Enriched Extracellular Particles. Stem Cells, 31, 2737-2746. >https://doi.org/10.1002/stem.1409
Liu, T., Hao, Q., Zhang, Y., Li, Z., Cui, Z. and Yang, W. (2018) Effects of MicroRNA‐133b on Retinal Vascular Endothelial Cell Proliferation and Apoptosis through Angiotensinogen‐Mediated Angiotensin II-Extracellular Signal‐Regulated Kinase 1/2 Signalling Pathway in Rats with Diabetic Retinopathy. Acta Ophthalmologica, 96, e626-e635. >https://doi.org/10.1111/aos.13715
Chen, L. (2020) The Expanding Regulatory Mechanisms and Cellular Functions of Circular RNAs. Nature Reviews Molecular Cell Biology, 21, 475-490. >https://doi.org/10.1038/s41580-020-0243-y
Zhou, W., Cai, Z., Liu, J., Wang, D., Ju, H. and Xu, R. (2020) Circular RNA: Metabolism, Functions and Interactions with Proteins. Molecular Cancer, 19, Article No. 172. >https://doi.org/10.1186/s12943-020-01286-3
Wang, Y.Y., Wang, Y.Z., Zhang, H.Y. and He, Z.Y. (2021) The Role of Circular RNAs in Brain and Stroke. Frontiers in Bioscience (Landmark Ed.), 26, 36-50.
Zhang, X., Hamblin, M.H. and Yin, K. (2018) Noncoding RNAs and Stroke. The Neuroscientist, 25, 22-26. >https://doi.org/10.1177/1073858418769556
Zang, J., Lu, D. and Xu, A. (2018) The Interaction of circRNAs and RNA Binding Proteins: An Important Part of circRNA Maintenance and Function. Journal of Neuroscience Research, 98, 87-97. >https://doi.org/10.1002/jnr.24356
Jeyaseelan, K., Lim, K.Y. and Armugam, A. (2008) MicroRNA Expression in the Blood and Brain of Rats Subjected to Transient Focal Ischemia by Middle Cerebral Artery Occlusion. Stroke, 39, 959-966. >https://doi.org/10.1161/strokeaha.107.500736
Lusardi, T.A., Farr, C.D., Faulkner, C.L., Pignataro, G., Yang, T., Lan, J., et al. (2009) Ischemic Preconditioning Regulates Expression of microRNAs and a Predicted Target, MeCP2, in Mouse Cortex. Journal of Cerebral Blood Flow&Metabolism, 30, 744-756. >https://doi.org/10.1038/jcbfm.2009.253
Bam, M., Yang, X., Sen, S., Zumbrun, E.E., Dennis, L., Zhang, J., et al. (2017) Characterization of Dysregulated miRNA in Peripheral Blood Mononuclear Cells from Ischemic Stroke Patients. Molecular Neurobiology, 55, 1419-1429. >https://doi.org/10.1007/s12035-016-0347-8
Kim, J., Inoue, K., Ishii, J., Vanti, W.B., Voronov, S.V., Murchison, E., et al. (2007) A MicroRNA Feedback Circuit in Midbrain Dopamine Neurons. Science, 317, 1220-1224. >https://doi.org/10.1126/science.1140481
Zuo, X., Lu, J., Manaenko, A., Qi, X., Tang, J., Mei, Q., et al. (2019) MicroRNA-132 Attenuates Cerebral Injury by Protecting Blood-Brain-Barrier in MCAO Mice. Experimental Neurology, 316, 12-19. >https://doi.org/10.1016/j.expneurol.2019.03.017
Lopez-Ramirez, M.A., Wu, D., Pryce, G., Simpson, J.E., Reijerkerk, A., King-Robson, J., et al. (2014) MicroRNA-155 Negatively Affects Blood-Brain Barrier Function during Neuroinflammation. The FASEB Journal, 28, 2551-2565. >https://doi.org/10.1096/fj.13-248880
Lu, W., Chen, Z. and Wen, J. (2021) RhoA/ROCK Signaling Pathway and Astrocytes in Ischemic Stroke. Metabolic Brain Disease, 36, 1101-1108. >https://doi.org/10.1007/s11011-021-00709-4
Lu, W., Chen, Z. and Wen, J. (2023) The Role of RhoA/ROCK Pathway in the Ischemic Stroke-Induced Neuroinflammation. Biomedicine&Pharmacotherapy, 165, Article ID: 115141. >https://doi.org/10.1016/j.biopha.2023.115141
Lu, W., Wang, Y. and Wen, J. (2024) The Roles of RhoA/ROCK/NF-κB Pathway in Microglia Polarization Following Ischemic Stroke. Journal of Neuroimmune Pharmacology, 19, Article No. 19. >https://doi.org/10.1007/s11481-024-10118-w
Zhang, Y., Miao, L., Peng, Q., Fan, X., Song, W., Yang, B., et al. (2022) Parthenolide Modulates Cerebral Ischemia-Induced Microglial Polarization and Alleviates Neuroinflammatory Injury via the RhoA/ROCK Pathway. Phytomedicine, 105, Article ID: 154373. >https://doi.org/10.1016/j.phymed.2022.154373
Lu, W. and Wen, J. (2022) H
2S-Mediated Inhibition of RhoA/ROCK Pathway and Noncoding RNAs in Ischemic Stroke. Metabolic Brain Disease, 38, 163-176. >https://doi.org/10.1007/s11011-022-01130-1
Feng, S., Zou, L., Wang, H., He, R., Liu, K. and Zhu, H. (2018) RhoA/ROCK-2 Pathway Inhibition and Tight Junction Protein Upregulation by Catalpol Suppresses Lipopolysaccaride-Induced Disruption of Blood-Brain Barrier Permeability. Molecules, 23, Article No. 2371. >https://doi.org/10.3390/molecules23092371
王煜, 阚伯红, 赵岚, 等. 三焦针法对SAM小鼠血脑屏障通透性的改善作用及通过RhoA/ROCK通路的调控作用[J]. 吉林大学学报(医学版), 2021, 47(5): 1086-1091.
蔡维平, 陈燕芬, 汤李超, 等. 七叶皂苷钠对细菌性脑膜炎大鼠RhoA/ROCK通路及血脑屏障通透性的影响[J]. 中国微生态学杂志, 2022, 34(6): 644-650.
崔庆宏. Rho激酶抑制剂对大鼠脑缺血后RhoA、GAP-43和Claudin-5表达的影响[D]: [硕士学位论文]. 北京: 首都医科大学, 2012.