Figure 3. Lateral instability bifurcation line of low period ring in synchronous chaotic attractor--图3. 同步混沌吸引子中低周期环的横向失稳分岔曲线--Figure 4. Lateral Lyapunov index with respect to the coupling coefficient and d--图4. 横向李雅普诺夫指数关于耦合系数和d的变化曲线--3. 吸引域和冒泡吸引盆的形成
Figure 5. Suction basin under different coupling constants: the global bubbling suction basin: d=−1.5,ε=−0.8,σ=−0.7--图5. 不同耦合常数下的吸引盆:全局冒泡的吸引盆, d=−1.5,ε=−0.8,σ=−0.7--Figure 6. Suction basin under different coupling constants: locally bubbling suction basin: d=−1.2,ε=−0.7,σ=−0.5--图6. 不同耦合常数下的吸引盆:局部冒泡的吸引盆, d=−1.2,ε=−0.7,σ=−0.5--
图7
显示了当
时的构造结果。由曲线
,
,构成了
Figure 7. Local bubbling suction basin: d=−1.23,ε=−0.6,σ=−0.63--图7. 局部冒泡吸引盆: d=−1.23,ε=−0.6,σ=−0.63--Figure 8. Global bubbling suction basin: d=−1.1,ε=−0.6,σ=−0.5--图8. 全局冒泡吸引盆: d=−1.1,ε=−0.6,σ=−0.5--Figure 9. The blowout bifurcated: d=−0.48,ε=−0.24,σ=−0.24--图9. 井喷分岔, d=−0.48,ε=−0.24,σ=−0.24--
Figure 10. The change curve of the transverse Lyapunov index when a= a 1--图10. a= a 1 时横向李雅普诺夫指数的变化曲线--Figure 11. The attractor basin, attractor domain, and attractor morphology at blowout bifurcation: a= a 1 ,d=−1.04, ε=−0.52,σ=−0.52--图11. 发生井喷分叉时的吸引盆,吸引域以及吸引子的形态: a= a 1 ,d=−1.04,ε=−0.52,σ=−0.52--
References
Rulkov, N.F. (1996) Images of Synchronized Chaos: Experiments with Circuits. Chaos: An Interdisciplinary Journal of Nonlinear Science, 6, 262-279. >https://doi.org/10.1063/1.166174
Fujisaka, H. and Yamada, T. (1983) Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. Progress of Theoretical Physics, 69, 32-47. >https://doi.org/10.1143/PTP.69.32
Zhou, L., You, Z. and Tang, Y. (2021) A New Chaotic System with Nested Coexisting Multiple Attractors and Riddled Basins. Chaos, Solitons&Fractals, 148, Article 111057. >https://doi.org/10.1016/j.chaos.2021.111057
Ashwin, P., Buescu, J. and Stewart, I. (1996) From Attractor to Chaotic Saddle: A Tale of Transverse Instability. Nonlinearity, 9, Article 703. >https://doi.org/10.1088/0951-7715/9/3/006
Lai, Y.C., Grebogi, C., Yorke, J.A., et al. (1996) Riddling Bifurcation in Chaotic Dynamical Systems. Physical Review Letters, 77, Article 55. >https://doi.org/10.1103/PhysRevLett.77.55
Cao, Y. (2004) A Note about Milnor Attractor and Riddled Basin. Chaos, Solitons&Fractals, 19, 759-764. >https://doi.org/10.1016/S0960-0779(03)00205-4
Rabiee, M., Ghane, F.H., Zaj, M., et al. (2022) The Occurrence of Riddled Basins and Blowout Bifurcations in a Parametric Nonlinear System. Physica D: Nonlinear Phenomena, 435, Article 133291. >https://doi.org/10.1016/j.physd.2022.133291
Maistrenko, Y.L., Maistrenko, V.L., Popovich, A., et al. (1998) Transverse Instability and Riddled Basins in a System of Two Coupled Logistic Maps. Physical Review E, 57, Article 2713. >https://doi.org/10.1103/PhysRevE.57.2713
Bischi, G.I., Mammana, C. and Gardini, L. (2000) Multistability and Cyclic Attractors in Duopoly Games. Chaos, Solitons&Fractals, 11, 543-564. >https://doi.org/10.1016/S0960-0779(98)00130-1
Abraham, R., Mira, C. and Gardini, L. (1997) Chaos in Discrete Dynamical Systems. Telos. >https://doi.org/10.1007/978-1-4612-1936-1