Figure 1. Comparison of TC removal in various systems--图1. 不同体系下TC去除的比较--Figure 2. Effect of different PMS dosage on TC removal--图2. PMS浓度对TC去除率的影响--3.3. 催化剂用量对催化效果的影响Figure 3. Effect of different catalyst dosage on TC removal--图3. 催化剂用量对TC去除率的影响--
如
图3
所示,催化剂的用量对TC的去除率也会显著影响。当催化剂添加量从0.05 g/L增加到0.25 g/L时,45 min TC的降解率从83.8%增加到了97.3%。随着Ni/Co-LDH催化剂添加量的增加,TC的去除率也在增加。催化剂添加量为0.20 g/L时,TC的去除率为97.1%,与催化剂添加量为0.25 g/L时差距不大。基于经济环保的角度,选择浓度0.20 g/L的Ni/Co-LDH为催化剂最佳添加量。
Figure 4. Effect of different pH on TC removal--图4. 不同pH对TC去除率的影响--3.5. 共存阴离子对催化效果的影响Figure 5. Effect of coexisting anions on TC removal--图5. 共存阴离子对TC去除率的影响--
References
Yang, Y., Gong, F., Liu, X., Li, Y., Chen, Q. and Pan, S. (2024) Construction of NiP/Ni(OH)
2/Ag-ZIF Photocatalyst with 2-Methylimidazole Framework for Rapid Removal of Tetracycline. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 683, Article ID: 132997. >https://doi.org/10.1016/j.colsurfa.2023.132997
He, N., Yu, Z., Yang, G., Tan, Q., Wang, J. and Chen, Y. (2024) Designing with A-Site Cation Defects in LaFeO
3: Removal of Tetracycline Hydrochloride in Complex Environments Using Photo-Fenton Synergy. Chemical Engineering Journal, 484, Article ID: 149613. >https://doi.org/10.1016/j.cej.2024.149613
Yang, J., Du, Y., Li, W., Shan, S., Hu, T. and Su, H. (2024) Iron Oxide/alginate Hydrogel Composites for Removal of Tetracycline via Adsorption-Coupled Fenton-Like Reaction. Materials Chemistry and Physics, 315, Article ID: 129034. >https://doi.org/10.1016/j.matchemphys.2024.129034
Feng, S., Xie, T., Wang, J., Yang, J., Kong, D., Liu, C., et al. (2023) Photocatalytic Activation of PMS over Magnetic Heterojunction Photocatalyst SrTiO
3/BaFe
12O
19for Tetracycline Ultrafast Degradation. Chemical Engineering Journal, 470, Article ID: 143900. >https://doi.org/10.1016/j.cej.2023.143900
An, B., Liu, J., Zhu, B., Liu, F., Jiang, G., Duan, X., et al. (2023) Returnable Mos2@carbon Nitride Nanotube Composite Hollow Spheres Drive Photo-Self-Fenton-Pms System for Synergistic Catalytic and Photocatalytic Tetracycline Degradation. Chemical Engineering Journal, 478, Article ID: 147344. >https://doi.org/10.1016/j.cej.2023.147344
Zhang, D., He, Q., Hu, X., Zhang, K., Chen, C. and Xue, Y. (2021) Enhanced Adsorption for the Removal of Tetracycline Hydrochloride (TC) Using Ball-Milled Biochar Derived from Crayfish Shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 615, Article ID: 126254. >https://doi.org/10.1016/j.colsurfa.2021.126254
Li, Y., Fu, M., Wang, R., Wu, S. and Tan, X. (2022) Efficient Removal TC by Zn@SnO
2/PI via the Synergy of Adsorption and Photocatalysis under Visible Light. Chemical Engineering Journal, 444, Article ID: 136567. >https://doi.org/10.1016/j.cej.2022.136567
Xu, H., Deng, Y., Li, M., Zhang, K., Zou, J., Yang, Y., et al. (2023) Removal of Tetracycline in Nitrification Membrane Bioreactors with Different Ammonia Loading Rates: Performance, Metabolic Pathway, and Key Contributors. Environmental Pollution, 332, Article ID: 121922. >https://doi.org/10.1016/j.envpol.2023.121922
Zhang, C., Ni, J., Ding, N. and Liu, H. (2023) Visible-Light-Assisted PMS Activation by Heterojunction Photocatalyst MgIn
2S
4/Bi
2O
3for Tetracycline Degradation. Catalysis Communications, 183, Article ID: 106773. >https://doi.org/10.1016/j.catcom.2023.106773
Dhiman, P., Kumar, A., Rana, G. and Sharma, G. (2023) Cobalt-Zinc Nanoferrite for Synergistic Photocatalytic and Peroxymonosulfate-Assisted Degradation of Sulfosalicylic Acid. Journal of Materials Science, 58, 9938-9966. >https://doi.org/10.1007/s10853-023-08669-z
Le, V., Nguyen, T., Doong, R., Chen, C., Tran, C. and Dong, C. (2023) Peroxymonosulfate Activation over NiCo
2O
4/MnOOH for Enhancing Ciprofloxacin Degradation in Water. Environmental Technology&Innovation, 30, Article ID: 103117. >https://doi.org/10.1016/j.eti.2023.103117
You, Y., Xu, G., Yang, X., Liu, Y., Ma, X. and Ji, Y. (2024) Cu-Fe-Ni Layered Hydroxides/Magnetic Biochar Composite as Peroxymonosulfate Activator for Removal of Enrofloxacin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 683, Article ID: 133082. >https://doi.org/10.1016/j.colsurfa.2023.133082
Gao, S., Pan, J., Zhang, Y., Zhao, Z. and Cui, J. (2024) Mn-NSC Co-Doped Modified Biochar/permonosulfate System for Degradation of Ciprofloxacin in Wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 680, Article ID: 132640. >https://doi.org/10.1016/j.colsurfa.2023.132640
Tan, Y., Li, C., Sun, Z., Bian, R., Dong, X., Zhang, X., et al. (2020) Natural Diatomite Mediated Spherically Monodispersed CoFe
2O
4Nanoparticles for Efficient Catalytic Oxidation of Bisphenol a through Activating Peroxymonosulfate. Chemical Engineering Journal, 388, Article ID: 124386. >https://doi.org/10.1016/j.cej.2020.124386
Li, J., Li, S., Cao, Z., Zhao, Y., Wang, Q. and Cheng, H. (2023) Heterostructure CoFe
2O
4/Kaolinite Composite for Efficient Degradation of Tetracycline Hydrochloride through Synergetic Photo-Fenton Reaction. Applied Clay Science, 244, Article ID: 107102. >https://doi.org/10.1016/j.clay.2023.107102
Gong, C., Chen, F., Yang, Q., Luo, K., Yao, F., Wang, S., et al. (2017) Heterogeneous Activation of Peroxymonosulfate by Fe-Co Layered Doubled Hydroxide for Efficient Catalytic Degradation of Rhoadmine B. Chemical Engineering Journal, 321, 222-232. >https://doi.org/10.1016/j.cej.2017.03.117
Bai, J., Zhang, X., Wang, C., Li, X., Xu, Z., Jing, C., et al. (2024) The Adsorption-Photocatalytic Synergism of LDHs-Based Nanocomposites on the Removal of Pollutants in Aqueous Environment: A Critical Review. Journal of Cleaner Production, 436, Article ID: 140705. >https://doi.org/10.1016/j.jclepro.2024.140705
Deng, J., Xiao, L., Yuan, S., Wang, W., Zhan, X. and Hu, Z. (2021) Activation of Peroxymonosulfate by Cofeni Layered Double Hydroxide/Graphene Oxide (LDH/GO) for the Degradation of Gatifloxacin. Separation and Purification Technology, 255, Article ID: 117685. >https://doi.org/10.1016/j.seppur.2020.117685
Zhang, S., Zhang, L., Liu, L., Wang, X., Pan, J., Pan, X., et al. (2022) NiCo-LDH@MnO
2Nanocages as Advanced Catalysts for Efficient Formaldehyde Elimination. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650, Article ID: 129619. >https://doi.org/10.1016/j.colsurfa.2022.129619