Figure 1. The single-cell landscape of pancreatic cancer, including. (a) The clustering results of all cells after annotation. (b) The clustering results of epithelial cells. (c) The identification of benign and malignant epithelial cells. (d) The clustering results of annotated epithelial cell subtypes--图1. 胰腺癌的单细胞景观。(a) 所有细胞注释后的聚类结果;(b) 上皮细胞的聚类结果;(c) 良恶性上皮细胞的识别;(d) 上皮细胞亚群注释后的聚类结果--
Figure 2. Differential genes and enriched pathways for epithelial cell subpopulations. (a) Top ten differential genes for each subpopulation. (b) Top five enriched pathways for each subpopulation--图2. 上皮细胞亚群的差异基因及富集通路。(a) 每个亚群的前十个差异基因;(b) 每个亚群富集的前五个通路--
Figure 3. Results of the cell trajectory analysis of epithelial cells. (a) Distribution of epithelial cell subpopulations. (b) Evolutionary trajectory of epithelial cells. (c) Expression of the top 10 genes with the greatest change in expression during epithelial cell evolution--图3. 上皮细胞拟时序分析结果。(a) 上皮细胞亚群的分布情况;(b) 上皮细胞的细胞轨迹分析结果;(c) 上皮细胞演化过程中表达量变化最大的前10个基因的表达量--
通过计算每个细胞亚群在充当配体细胞和受体细胞时的输出通讯强度(Outputting communication strength)和输入通讯强度(Inputting communication strength),更全面地了解每个细胞亚群在通讯网络中的角色,结果如
图4(b)
所示。成纤维细胞和肿瘤细胞在通讯网络中扮演了重要的角色,它们不仅是主要的信号发送者,也是主要的信号接收者,具有最高的输出通讯强度;肿瘤亚群的通讯强度较为相近,其中tum4亚群的通讯强度最高,可能与其细胞迁移状态有关。
Figure 4. Results of cell-communication analysis. (a) Communication network diagram between cellular subpopulations. (b) Output/input communication strengths of all cellular subpopulations. (c) Cell-cell communication correspondence, with ten output communication modes synergistically involved in 39 signalling pathways--图4. 细胞通讯分析结果。(a) 细胞亚群间的通讯网络图;(b) 所有细胞亚群的输出/输入通讯强度;(c) 细胞-细胞通讯对应关系,十种输出通讯模式协同参与39条信号通路--
Table 1. Nine signaling pathways primarily participated by the hypoxic tumor subpopulationTable 1. Nine signaling pathways primarily participated by the hypoxic tumor subpopulation 表1. 缺氧肿瘤亚群主要参与的九个信号通路
Figure 5. (a) Results of univariate Cox proportional hazards regression analysis. (b) K-M survival curves of patients in the high- and low-risk groups. (c) Time-dependent ROC curves to predict survival status of patients--图5. (a) 单变量Cox比例风险回归分析结果;(b) 高/低风险组患者的K-M生存曲线;(c)预测患者生存状态的时间依赖ROC曲线--
References
Rahib, L., Smith, B.D., Aizenberg, R., Rosenzweig, A.B., Fleshman, J.M. and Matrisian, L.M. (2014) Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Research, 74, 2913-2921. >https://doi.org/10.1158/0008-5472.can-14-0155
Chen, W., Zheng, R., Baade, P.D., Zhang, S., Zeng, H., Bray, F., et al. (2016) Cancer Statistics in China, 2015. CA: A Cancer Journal for Clinicians, 66, 115-132. >https://doi.org/10.3322/caac.21338
Sherman, M.H. and Beatty, G.L. (2023) Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance. Annual Review of Pathology: Mechanisms of Disease, 18, 123-148. >https://doi.org/10.1146/annurev-pathmechdis-031621-024600
Hwang, B., Lee, J.H. and Bang, D. (2018) Single-Cell RNA Sequencing Technologies and Bioinformatics Pipelines. Experimental&Molecular Medicine, 50, 1-14. >https://doi.org/10.1038/s12276-018-0071-8
Sachs, N. and Clevers, H. (2014) Organoid Cultures for the Analysis of Cancer Phenotypes. Current Opinion in Genetics&Development, 24, 68-73. >https://doi.org/10.1016/j.gde.2013.11.012
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. >https://doi.org/10.1016/j.cell.2011.02.013
Muz, B., de la Puente, P., Azab, F. and Azab, A.K. (2015) The Role of Hypoxia in Cancer Progression, Angiogenesis, Metastasis, and Resistance to Therapy. Hypoxia, 3, 83-92. >https://doi.org/10.2147/hp.s93413
Jing, X., Yang, F., Shao, C., Wei, K., Xie, M., Shen, H., et al. (2019) Role of Hypoxia in Cancer Therapy by Regulating the Tumor Microenvironment. Molecular Cancer, 18, Article No. 157. >https://doi.org/10.1186/s12943-019-1089-9
Sun, X., Luo, H., Han, C., Zhang, Y. and Yan, C. (2021) Identification of a Hypoxia-Related Molecular Classification and Hypoxic Tumor Microenvironment Signature for Predicting the Prognosis of Patients with Triple-Negative Breast Cancer. Frontiers in Oncology, 11, Article 700062. >https://doi.org/10.3389/fonc.2021.700062
Shi, Y., Huang, X., Du, Z. and Tan, J. (2022) Analysis of Single-Cell RNA-Sequencing Data Identifies a Hypoxic Tumor Subpopulation Associated with Poor Prognosis in Triple-Negative Breast Cancer. Mathematical Biosciences and Engineering, 19, 5793-5812. >https://doi.org/10.3934/mbe.2022271
Yang, X., Weng, X., Yang, Y., Zhang, M., Xiu, Y., Peng, W., et al. (2021) A Combined Hypoxia and Immune Gene Signature for Predicting Survival and Risk Stratification in Triple-Negative Breast Cancer. Aging, 13, 19486-19509. >https://doi.org/10.18632/aging.203360
Grossman, R.L., Heath, A.P., Ferretti, V., Varmus, H.E., Lowy, D.R., Kibbe, W.A., et al. (2016) Toward a Shared Vision for Cancer Genomic Data. New England Journal of Medicine, 375, 1109-1112. >https://doi.org/10.1056/nejmp1607591
Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., et al. (2021) Integrated Analysis of Multimodal Single-Cell Data. Cell, 184, 3573-3587.E29. >https://doi.org/10.1016/j.cell.2021.04.048
Aran, D., Looney, A.P., Liu, L., Wu, E., Fong, V., Hsu, A., et al. (2019) Reference-based Analysis of Lung Single-Cell Sequencing Reveals a Transitional Profibrotic Macrophage. Nature Immunology, 20, 163-172. >https://doi.org/10.1038/s41590-018-0276-y
Gao, R., Bai, S., Henderson, Y.C., Lin, Y., Schalck, A., Yan, Y., et al. (2021) Delineating Copy Number and Clonal Substructure in Human Tumors from Single-Cell Transcriptomes. Nature Biotechnology, 39, 599-608. >https://doi.org/10.1038/s41587-020-00795-2
Hänzelmann, S., Castelo, R. and Guinney, J. (2013) GSVA: Gene Set Variation Analysis for Microarray and RNA-Seq Data. BMC Bioinformatics, 14, Article No. 7. >https://doi.org/10.1186/1471-2105-14-7
Wang, M., Chen, X., Fang, Y., Zheng, X., Huang, T., Nie, Y., et al. (2024) The Trade-Off between Individual Metabolic Specialization and Versatility Determines the Metabolic Efficiency of Microbial Communities. Cell Systems, 15, 63-74.E5. >https://doi.org/10.1016/j.cels.2023.12.004
Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., et al. (2019) The Single-Cell Transcriptional Landscape of Mammalian Organogenesis. Nature, 566, 496-502. >https://doi.org/10.1038/s41586-019-0969-x
Jin, S., Guerrero-Juarez, C.F., Zhang, L., Chang, I., Ramos, R., Kuan, C., et al. (2021) Inference and Analysis of Cell-Cell Communication Using Cellchat. Nature Communications, 12, Article No. 1088. >https://doi.org/10.1038/s41467-021-21246-9
Liu, W. and Rodgers, G.P. (2016) Olfactomedin 4 Expression and Functions in Innate Immunity, Inflammation, and Cancer. Cancer and Metastasis Reviews, 35, 201-212. >https://doi.org/10.1007/s10555-016-9624-2
Wang, L., Fu, D., Weng, S., Xu, H., Liu, L., Guo, C., et al. (2023) Genome-Scale CRISPR-Cas9 Screening Stratifies Pancreatic Cancer with Distinct Outcomes and Immunotherapeutic Efficacy. Cellular Signalling, 110, Article ID: 110811. >https://doi.org/10.1016/j.cellsig.2023.110811
Zhang, J., Yang, J., Lin, C., Liu, W., Huo, Y., Yang, M., et al. (2020) Endoplasmic Reticulum Stress-Dependent Expression of ERO1L Promotes Aerobic Glycolysis in Pancreatic Cancer. Theranostics, 10, 8400-8414. >https://doi.org/10.7150/thno.45124
Luo, Y., Liu, C., Yao, Y., Tang, X., Yin, E., Lu, Z., et al. (2024) A Comprehensive Pan-Cancer Analysis of Prognostic Value and Potential Clinical Implications of FTH1 in Cancer Immunotherapy. Cancer Immunology, Immunotherapy, 73, Article No. 37. >https://doi.org/10.1007/s00262-023-03625-x
Schoeps, B., Eckfeld, C., Prokopchuk, O., Böttcher, J., Häußler, D., Steiger, K., et al. (2021) TIMP1 Triggers Neutrophil Extracellular Trap Formation in Pancreatic Cancer. Cancer Research, 81, 3568-3579. >https://doi.org/10.1158/0008-5472.can-20-4125
Suzuki, K., Watanabe, A., Araki, K., et al. (2018) High STMN1 Expression Is Associated with Tumor Differentiation and Metastasis in Clinical Patients with Pancreatic Cancer. Anticancer Research, 38, 939-944. >https://doi.org/10.21873/anticanres.12307
Ávila-López, P.A., Guerrero, G., Nuñez-Martínez, H.N., Peralta-Alvarez, C.A., Hernández-Montes, G., Álvarez-Hilario, L.G., et al. (2021) H2A.Z Overexpression Suppresses Senescence and Chemosensitivity in Pancreatic Ductal Adenocarcinoma. Oncogene, 40, 2065-2080. >https://doi.org/10.1038/s41388-021-01664-1
Korbecki, J., Grochans, S., Gutowska, I., Barczak, K. and Baranowska-Bosiacka, I. (2020) CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of Receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 Ligands. International Journal of Molecular Sciences, 21, Article 7619. >https://doi.org/10.3390/ijms21207619
Wang, C., Kong, L., Kim, S., Lee, S., Oh, S., Jo, S., et al. (2022) The Role of IL-7 and IL-7R in Cancer Pathophysiology and Immunotherapy. International Journal of Molecular Sciences, 23, Article 10412. >https://doi.org/10.3390/ijms231810412
Cui, H., Lian, J., Xu, B., Yu, Z., Xiang, H., Shi, J., et al. (2023) Identification of a Bile Acid and Bile Salt Metabolism-Related lncRNA Signature for Predicting Prognosis and Treatment Response in Hepatocellular Carcinoma. Scientific Reports, 13, Article No. 19512. >https://doi.org/10.1038/s41598-023-46805-6
Yang, Y., Yang, C., Yang, Q., Lu, S., Liu, B., Li, D., et al. (2024) Elucidating Hedgehog Pathway’s Role in HNSCC Progression: Insights from a 6-Gene Signature. Scientific Reports, 14, Article No. 4686. >https://doi.org/10.1038/s41598-024-54937-6
Liu, Z., Chen, H., Zheng, L., Sun, L. and Shi, L. (2023) Angiogenic Signaling Pathways and Anti-Angiogenic Therapy for Cancer. Signal Transduction and Targeted Therapy, 8, Article No. 198. >https://doi.org/10.1038/s41392-023-01460-1
Tao, G., Jiao, C., Wang, Y. and Zhou, Q. (2022) Comprehensive Analysis of Hypoxia-Related Genes for Prognosis, Immune Features, and Drugs Treatment Strategy in Gastric Cancer Using Bulk and Single-Cell RNA-Sequencing. Scientific Reports, 12, Article No. 21739. >https://doi.org/10.1038/s41598-022-26395-5
Dang, C.V., O’Donnell, K.A., Zeller, K.I., Nguyen, T., Osthus, R.C. and Li, F. (2006) The c-Myc Target Gene Network. Seminars in Cancer Biology, 16, 253-264. >https://doi.org/10.1016/j.semcancer.2006.07.014
Xu, J., Chen, Y. and Olopade, O.I. (2010) MYC and Breast Cancer. Genes&Cancer, 1, 629-640. >https://doi.org/10.1177/1947601910378691