pi Pharmacy Information 2160-441X 2160-4452 beplay体育官网网页版等您来挑战! 10.12677/pi.2024.134047 pi-92397 Articles 医药卫生 特异性促炎症消退介质干预溃疡性结肠炎的研究进展
Specialized Pro-Resolving Mediators: Unveiling Their Role in Ulcerative Colitis
郭鹏翔 中国药科大学中药学院中药药理与中医药学系,江苏 南京 05 07 2024 13 04 398 404 17 6 :2024 19 6 :2024 19 7 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 近年来,特异性促炎症消退介质(SPMs)对溃疡性结肠炎(UC)的影响日益受到关注。SPMs通过加速中性粒细胞清除、促进胞葬和修复上皮缺损等途径,促进结肠炎症的消退。本文就SPMs的分类及作用进行综述,关注其在UC中的最新研究进展,旨在为揭示UC的发病机制和构建靶向治疗策略提供参考。
Recently, there has been a growing focus on the role of specialized pro-resolving mediators (SPMs) in ulcerative colitis (UC). SPMs facilitate the resolution of colonic inflammation by accelerating neutrophil clearance, promoting efferocytosis, and facilitating epithelial repair. These functions offer novel insights into the treatment of UC. This article provides a comprehensive review of the classification and mechanisms of action of SPMs. It also summarizes the latest research advances in their role in UC. The aim is to establish a theoretical basis and suggest new research directions for future therapeutic strategies.
特异性促炎症消退介质,溃疡性结肠炎,消退素,脂氧素,保护素
Specialized Pro-Resolving Mediators
Ulcerative Colitis Resolvins Lipoxins Protectins
1. 引言

炎症消退失败或受损参与某些慢性炎症疾病的发病机制,如炎症性肠病(IBD)和类风湿性关节炎(RA) [1] 。促炎症消退治疗策略的优点在于:1) 抑制炎症,减少毒副作用,如免疫抑制、胃肠道出血和其他不良反应 [2] ;2) 以“轻至中度作用”为特征,平衡促炎和抗炎反应,以达到平衡 [2] ;3) 促进病原体清除,减少对抗生素的需求 [3] ;4) 促进组织愈合/修复和功能(恢复组织稳态);5) 调节先天性和适应性免疫,控制机体对病原体感染的反应 [4]

特异性促炎症消退介质(specialized pro-resolving mediators, SPMs)是由ω-3和ω-6必需脂肪酸经相关酶催化产生的具有生物活性的内分泌物,包括消退素(resolvins, Rvs)、maresins (MaRs)、保护素(protectins, PDs)和脂氧素(lipoxins, LXs) [5] 。SPMs生物合成受损可诱发慢性炎症,外源性补充SPMs改善慢性炎症疾病 [6]

溃疡性结肠炎(ulcerative colitis, UC)是一种由免疫异常介导的慢性炎症性疾病,其特征为血便、腹泻和里急后重等。UC的发病机制十分复杂,与自身免疫紊乱、遗传因素、环境因素和微生物感染等有关 [7] 。UC的全球患病率正在迅速增加,已达到每10万人7~246例 [8] [9] 。目前有关SPMs在UC治疗中的价值尚处于研究阶段。深入了解炎症消退在UC发病中的角色,以及如何通过促进SPM生物合成改善患者的临床结局具有重要意义。

2. 炎症的消退

炎症是机体对微生物入侵或组织损伤的关键防御机制,表现为毛细血管扩张、通透性增加、白细胞迁移和组织水肿。微生物入侵时,病原体释放的相关分子模式(PAMPs)与细胞膜或细胞器膜表面的模式识别受体(PRRs)结合,有效激活了靶细胞。随后,这一激活过程引发复杂的生化反应,包括TNF-α、IL-1β和IL-6等细胞因子的合成和分泌。同时,趋化因子和促炎脂质介质也被合成和释放。在正常情况下,炎症反应具有自限性,其适时消退对于受损组织结构和功能的恢复至关重要。炎症的消退是一个积极的调节过程,包括清除细胞碎片和恢复组织的完整性,以实现稳态。介导因子如SPMs,在急性炎症的消退过程中由酶促反应产生。中性粒细胞、单核细胞和巨噬细胞等免疫细胞是SPMs的主要产生细胞。LXs源自ω-6脂肪酸花生四烯酸(AA),是白三烯(LTs)和前列腺素(PGs)等促炎脂质介质的前体 [10] 。PDs、RvDs和MaRs由二十二碳六烯酸(DHA)衍生而来,而RvEs则由二十碳五烯酸(EPA)衍生而来。中间体二十二碳五烯酸(n-3DPA)可以通过酶促转化为新型的n-3产物,PDs、Rvs和MaRs (PDn-3DPA、Rvn-3DPA和MaRn-3DPA)。

炎症的消退一定程度上是由脂质介质从促炎的二十烷类脂质转换到SPMs控制的 [11] 。尽管SPMs促进免疫细胞如巨噬细胞吞噬入侵微生物,但它们的作用主要集中在调节免疫反应和促进组织修复。因此,在炎症过程中,SPMs的生物合成和释放的有序调节至关重要。SPMs通过多种机制限制炎症反应,包括调节免疫细胞招募、增强吞噬作用、凋亡和胞葬作用 [12] 。SPMs还可以促进肠上皮的损伤修复,该作用由上皮细胞的集体迁移和增殖介导。

2.1. 特异性促炎症消退介质与UC

肠道炎症的特征是肠道通透性增加,上皮连接受损和炎症反应。在包括UC在内的慢性炎症条件下,黏膜促炎因子(如选择性的细胞因子和趋化因子)与SPMs之间的微妙平衡被扰乱,从而影响肠道上皮细胞的稳态和修复特性,导致上皮溃疡和屏障缺陷。由免疫细胞和上皮细胞合成的SPMs在促进炎症消退和恢复黏膜稳态中发挥重要作用 [13] 。葡聚糖硫酸钠(DSS)、2,4,6-三硝基苯磺酸(TNBS)等实验性结肠炎模型均证实了SPMs对改善结肠炎症的有益作用 [14]

与其他器官系统类似,结肠炎症消退和组织修复需要中性粒细胞凋亡,并通过巨噬细胞中由SPMs信号介导的胞葬作用清除细胞碎片 [15] 。此外,通过触发抗菌肽的产生,SPMs促进肠道黏膜的防御功能,确保免疫系统仅在必要时被激活 [16] 。值得一提的是,除了对免疫细胞的免疫调节或抗炎特性外,SPMs还促进肠道上皮细胞的迁移和增殖等修复反应 [17]

消退素,即消退阶段作用产物,包括RvD1-RvD6组成的D系列、RvE1-RvE3组成的E系列和RvT1-RvT4组成的T系列。研究表明,Rvs可以激活G蛋白偶联受体(GPCR)信号介导炎症的消退和组织修复 [2]

RvD1是第一个被识别的SPM,与GPR32和ALX/FPR2结合,而RvD2选择性结合GPR18。此外,RvD3和RvD5均能结合并激活GPR32 [18] [19] 。然而,其他D系列消退素的受体尚未确定。RvD1及其阿司匹林诱导形式AT-RvD1对中性粒细胞的结构和功能产生显著影响。这包括抑制肌动蛋白聚合、阻断白三烯B4 (LTB4)信号传导以及抑制LTB4诱导的CD11b/18黏附,从而降低IL-6、IFN-γ和前列腺素等促炎因子水平,最终减少中性粒细胞迁移 [20] 。在巨噬细胞中,RvD1抑制脂多糖(LPS)诱导的巨噬细胞产生TNF-α。此外,RvD1驱动巨噬细胞走向促炎症消退表型,减少促炎因子如IL-1β和IL-8的分泌,同时通过促进自噬体与溶酶体的融合促进巨噬细胞自噬 [21]

在DSS诱导的小鼠急性结肠炎模型中,RvD1通过下调IL-6水平发挥抗炎作用。在DSS联合氧化偶氮甲烷(AOM)诱导的小鼠炎症相关结直肠癌模型中,RvD1通过调控IL6/STAT3/CyclinD1信号通路抑制IL-6诱导的有丝分裂和肿瘤形成,表现出预防和治疗肠道肿瘤的潜力 [22] 。此外,在DSS诱导的小鼠慢性结肠炎模型中,RvD1通过抑制炎细胞浸润、减少促炎因子表达和改善肠道屏障功能,对结肠炎呈现保护作用 [23] 。在DSS诱导的小鼠急性结肠炎模型中和肠道缺血再灌注模型中,RvD5n-3DPA能够通过抑制中性粒细胞与内皮细胞的相互作用减少中性粒细胞浸润,对结肠损伤具有保护作用 [13]

RvE1是首个被证实对中性粒细胞迁移具有强大抑制作用的消退素 [24] ,其在实验性小鼠结肠炎和结肠黏膜损伤模型中展现出强大的抗炎和促进愈合作用。在TNBS诱导的急性结肠炎模型中,RvE1能够有效抑制炎细胞浸润 [17] 。在DSS诱导的小鼠结肠炎模型中,RvE1通过抑制NF-κB信号通路激活、减少趋化因子的释放以及抑制中性粒细胞的黏附和招募,显著降低结肠炎小鼠的疾病活动指数(DAI)评分 [25] 。此外,RvE1还能通过上调肠道碱性磷酸酶(ALPI)表达和活性、增加LPS去磷酸化,降低IL-1β和CXCL1的水平,保护结肠上皮和隐窝的完整性 [14] 。在活检钳造成的小鼠结肠黏膜损伤模型中,RvE1能够通过增强细胞–基质黏附、细胞增殖和迁移,促进结肠黏膜愈合 [26]

脂氧素是花生四烯酸途径的代谢产物,主要由中性粒细胞和巨噬细胞生成。ALX/FPR2作为LXA4和阿司匹林触发的15-epi-LXA4 (ATL)的共同受体,在炎症调控中发挥着关键作用。研究表明,LXA4与ALX/FPR2的结合能够触发正反馈循环,在体内低剂量的情况下亦能增强ALX/FPR2的表达水平 [27] 。当暴露于前列腺素E2或D2等促炎脂质介质时,中性粒细胞会发生从LTB4向LXA4生物合成的转变。这种转变不仅触发了胞葬作用,还可以作为中性粒细胞募集的刹车信号,有助于炎症的消退 [28] 。此外,LXA4还能通过诱导巨噬细胞向炎症消退表型极化,进一步增强单核细胞调控的抗炎反应,促进组织的修复与再生 [29]

在DSS诱导的小鼠结肠炎模型中,LXA4通过下调NF-κB介导的促炎因子表达,显著降低了疾病活动指数并提高了生存率 [30] 。此外,研究发现患有持续结肠炎症的UC患者结肠组织中LXA4水平下降至原来的1/12,同时15-LOX蛋白的表达也相应减少。然而,在UC患者的缓解期,LXA4的水平却增加3倍 [31] 。上述结果提示,LXA4生物合成不足可能是UC患者炎症消退不充分的重要原因。值得一提的是,阿司匹林治疗能够上调结肠黏膜中LXA4的水平,并降低DSS结肠炎小鼠的疾病活动指数,这表明阿司匹林触发的LXA4合成对肠道黏膜炎症具有积极的治疗作用 [32] 。综上,前列腺素触发的LXA4合成似乎是肠道黏膜炎症诱发后启动消退反应的开关。

保护素D1 (PD1)能够抑制炎症期间的中性粒细胞迁移,并且可以与RvE1协同发挥效应 [33] 。与健康志愿者相比,UC患者组织活检样本中的PD1n-3DPA增加了1.5倍。与空白对照小鼠相比,DSS诱导的结肠炎小鼠结肠黏膜组织中DHA和n-3DPA衍生的保护素含量显著增加。PD1n-3DPA对实验性结肠炎小鼠保护性作用,而抑制15-LOX活性会导致PD1n-3DPA水平降低40%,并加剧肠道炎症 [13] 。值得一提的是,DSS诱导条件下,嗜酸性粒细胞缺陷小鼠比野生型小鼠表现出更严重的结肠炎症状 [34] 。小鼠结肠组织脂质谱显示,嗜酸性粒细胞缺陷小鼠中的PD1含量明显减少。此外,外源性补充PD1通过抑制黏膜组织中性粒细胞浸润并下调TNF-α、IL-1β和IL-6等促炎因子表达,降低了嗜酸性粒细胞缺陷小鼠结肠炎的严重程度。

与Rvs相似的是,巨噬细胞炎症消退介质MaRs具有强大的抗炎和促炎症消退特性,这些活性在很大程度上与其显著减少中性粒细胞迁移并增加巨噬细胞吞噬作用有关 [35] 。在DSS和TNBS诱导的小鼠实验性结肠炎模型中,MaR1能够抑制炎细胞浸润,减少组织损伤,对小鼠结肠炎具有改善作用 [36] 。此外,MaR1能够抑制急性和慢性结肠炎期间细胞内黏附分子1(ICAM-1)的上调。有趣的是,MaR1促进巨噬细胞极化为抗炎表型。与RvDs类似,MaR1能够促进单核细胞生成抗炎细胞因子IL-10 [37] 。在IL-10敲除诱导的自发性小鼠结肠炎模型中,MaR1能够通过下调IL6/STAT3信号通路,抑制炎细胞浸润 [38] 。在活检钳造成的小鼠结肠黏膜损伤模型中,结肠黏膜愈合过程中MaR2生物合成显著增加。外源性补充MaR2表现出对DSS诱导小鼠结肠炎和机械性结肠损伤的修复促进作用,揭示了其在肠道炎症治疗中的潜力 [39] 。其作用机制涉及与上皮GPCR受体的结合,进而激活Src-FAK信号传导,促进肠上皮细胞迁移。

2.2. SPMs在UC治疗中的挑战与应对策略

治疗慢性炎症性疾病的理想药物应具有在不损害免疫系统防御能力的前提下抑制炎症反应的能力。SPMs通过发挥免疫消退而非免疫抑制的作用,是治疗UC非常有前景的候选药物。然而,SPMs体内易被迅速代谢失活,其稳定性仍有待提高 [40] 。针对SPMs体内易失活的特点,可将SPMs设计成能够维持其结构完整性的稳定类似物。Charles N Serhan等设计出一种苯并-RvD1类似物,在简化合成步骤的同时保留其促炎症消退作用 [41] 。此外,一种用于治疗眼部和牙周损伤的RvE1类似物目前正处在临床试验阶段,结果令人鼓舞 [42] [43] 。使用稳定的Rvs类似物(如RvE1、RvD1或RvD2)加速慢性肠道炎症消退,可以促进巨噬细胞向抗炎表型极化,吞噬细胞碎片,并降低抗炎药物的需求。

通过纳米材料制备药物,已被用于治疗包括炎症性疾病在内的多种疾病。纳米粒子的直径小于100纳米,具有诸如延长药物在体内降解时间等特性,这些特性可用于递送药物,包括SPMs及其类似物。由阿司匹林触发的RvD1/LXA4纳米粒子以及RvE1纳米粒子已被证明能够抑制机体急性炎症反应,加速炎症消退,并促进上皮伤口愈合 [44]

3. 结语

尽管免疫抑制疗法已广泛用于UC的治疗,但这些药物仍存在局限性,部分患者响应率并不高。近年来的研究认为,炎症消退途径失调可能是抗炎药物不足以阻止疾病进展的重要原因,消退途径功能失调以及SPMs生物合成不足导致炎症持续存在并促使肠黏膜稳态改变,使UC迁延不愈。与其他抗炎因子不同,SPMs的独特之处在于它们作为免疫调节剂而非单纯的抗炎或免疫抑制剂,其不会削弱机体对病原微生物的应对能力,而是增强内源性过程,协助机体在炎症反应后恢复稳态。因此,深入探究SPMs在炎症消退过程中的生物生成及其功效,将有助于我们设计更为精准的辅助疗法,促进黏膜修复,为UC的防治提供新的策略。

NOTES

*通讯作者。

References Sugimoto, M.A., Vago, J.P., Perretti, M. and Teixeira, M.M. (2019) Mediators of the Resolution of the Inflammatory Response. Trends in Immunology, 40, 212-227. >https://doi.org/10.1016/j.it.2019.01.007 Perretti, M., Leroy, X., Bland, E.J. and Montero-Melendez, T. (2015) Resolution Pharmacology: Opportunities for Therapeutic Innovation in Inflammation. Trends in Pharmacological Sciences, 36, 737-755. >https://doi.org/10.1016/j.tips.2015.07.007 Chiang, N., Fredman, G., Bäckhed, F., Oh, S.F., Vickery, T., Schmidt, B.A., et al. (2012) Infection Regulates Pro-Resolving Mediators that Lower Antibiotic Requirements. Nature, 484, 524-528. >https://doi.org/10.1038/nature11042 Fullerton, J.N. and Gilroy, D.W. (2016) Resolution of Inflammation: A New Therapeutic Frontier. Nature Reviews Drug Discovery, 15, 551-567. >https://doi.org/10.1038/nrd.2016.39 Quiros, M. and Nusrat, A. (2019) Saving Problematic Mucosae: SPMs in Intestinal Mucosal Inflammation and Repair. Trends in Molecular Medicine, 25, 124-135. >https://doi.org/10.1016/j.molmed.2018.12.004 Radbakhsh, S., Katsiki, N., Santos, R.D., Mikhailidis, D.P., Mantzoros, C.S. and Sahebkar, A. (2022) Effects of Statins on Specialized Pro-Resolving Mediators: An Additional Pathway Leading to Resolution of Inflammation. Metabolism, 132, Article 155211. >https://doi.org/10.1016/j.metabol.2022.155211 Le Berre, C., Honap, S. and Peyrin-Biroulet, L. (2023) Ulcerative Colitis. The Lancet, 402, 571-584. >https://doi.org/10.1016/s0140-6736(23)00966-2 Jairath, V. and Feagan, B.G. (2020) Global Burden of Inflammatory Bowel Disease. The Lancet Gastroenterology&Hepatology, 5, 2-3. >https://doi.org/10.1016/s2468-1253(19)30358-9 Al-Horani, R., Spanudakis, E. and Hamad, B. (2021) The Market for Ulcerative Colitis. Nature Reviews Drug Discovery, 21, 15-16. >https://doi.org/10.1038/d41573-021-00194-5 Serhan, C.N. and Levy, B.D. (2018) Resolvins in Inflammation: Emergence of the Pro-Resolving Superfamily of Mediators. Journal of Clinical Investigation, 128, 2657-2669. >https://doi.org/10.1172/jci97943 Serhan, C.N., Chiang, N., Dalli, J. and Levy, B.D. (2014) Lipid Mediators in the Resolution of Inflammation. Cold Spring Harbor Perspectives in Biology, 7, a016311. >https://doi.org/10.1101/cshperspect.a016311 Pistorius, K., Souza, P.R., De Matteis, R., Austin-Williams, S., Primdahl, K.G., Vik, A., et al. (2018) PD n-3 DPAPathway Regulates Human Monocyte Differentiation and Macrophage Function. Cell Chemical Biology, 25, 749-760. >https://doi.org/10.1016/j.chembiol.2018.04.017 Gobbetti, T., Dalli, J., Colas, R.A., Federici Canova, D., Aursnes, M., Bonnet, D., et al. (2017) Protectin D1 n-3 DPAand Resolvin D5 n-3 DPAAre Effectors of Intestinal Protection. Proceedings of the National Academy of Sciences of the United States of America, 114, 3963-3968. >https://doi.org/10.1073/pnas.1617290114 Campbell, E.L., MacManus, C.F., Kominsky, D.J., Keely, S., Glover, L.E., Bowers, B.E., et al. (2010) Resolvin E1-Induced Intestinal Alkaline Phosphatase Promotes Resolution of Inflammation through LPS Detoxification. Proceedings of the National Academy of Sciences of the United States of America, 107, 14298-14303. >https://doi.org/10.1073/pnas.0914730107 Panigrahy, D., Gilligan, M.M., Serhan, C.N. and Kashfi, K. (2021) Resolution of Inflammation: An Organizing Principle in Biology and Medicine. Pharmacology&Therapeutics, 227, Article 107879. >https://doi.org/10.1016/j.pharmthera.2021.107879 Wan, M., Godson, C., Guiry, P.J., Agerberth, B. and Haeggström, J.Z. (2011) Leukotriene B 4/Antimicrobial Peptide LL-37 Proinflammatory Circuits Are Mediated by BLT1 and FPR2/ALX and Are Counterregulated by Lipoxin A 4and Resolvin E1. The FASEB Journal, 25, 1697-1705. >https://doi.org/10.1096/fj.10-175687 Arita, M., Yoshida, M., Hong, S., Tjonahen, E., Glickman, J.N., Petasis, N.A., et al. (2005) Resolvin E1, an Endogenous Lipid Mediator Derived from Omega-3 Eicosapentaenoic Acid, Protects against 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis. Proceedings of the National Academy of Sciences of the United States of America, 102, 7671-7676. >https://doi.org/10.1073/pnas.0409271102 Krishnamoorthy, S., Recchiuti, A., Chiang, N., Yacoubian, S., Lee, C., Yang, R., et al. (2010) Resolvin D1 Binds Human Phagocytes with Evidence for Proresolving Receptors. Proceedings of the National Academy of Sciences of the United States of America, 107, 1660-1665. >https://doi.org/10.1073/pnas.0907342107 Chiang, N., Dalli, J., Colas, R.A. and Serhan, C.N. (2015) Identification of Resolvin D2 Receptor Mediating Resolution of Infections and Organ Protection. Journal of Experimental Medicine, 212, 1203-1217. >https://doi.org/10.1084/jem.20150225 Sun, Y., Oh, S.F., Uddin, J., Yang, R., Gotlinger, K., Campbell, E., et al. (2007) Resolvin D1 and Its Aspirin-Triggered 17R Epimer: Stereochemical Assignments, Anti-Inflammatory Properties, and Enzymatic Inactivation. Journal of Biological Chemistry, 282, 9323-9334. >https://doi.org/10.1074/jbc.m609212200 Schmid, M., Gemperle, C., Rimann, N. and Hersberger, M. (2016) Resolvin D1 Polarizes Primary Human Macrophages toward a Proresolution Phenotype through GPR32. The Journal of Immunology, 196, 3429-3437. >https://doi.org/10.4049/jimmunol.1501701 Lee, H.-N., Choi, Y.-S., Kim, S.H., Zhong, X., Kim, W., Park, J.S., et al. (2021) Resolvin D1 Suppresses Inflammation-Associated Tumorigenesis in the Colon by Inhibiting IL-6-Induced Mitotic Spindle Abnormality. The FASEB Journal, 35, e21432. >https://doi.org/10.1096/fj.202002392r Zeng, C., Liu, X., Zhu, S., Xiong, D., Zhu, L., Hou, X., et al. (2022) Resolvin D1 Ameliorates Hepatic Steatosis by Remodeling the Gut Microbiota and Restoring the Intestinal Barrier Integrity in DSS-Induced Chronic Colitis. International Immunopharmacology, 103, Article 108500. >https://doi.org/10.1016/j.intimp.2021.108500 Campbell, E.L., Louis, N.A., Tomassetti, S.E., Canny, G.O., Arita, M., Serhan, C.N., et al. (2007) Resolvin E1 Promotes Mucosal Surface Clearance of Neutrophils: A New Paradigm for Inflammatory Resolution. The FASEB Journal, 21, 3162-3170. >https://doi.org/10.1096/fj.07-8473com Ishida, T., Yoshida, M., Arita, M., Nishitani, Y., Nishiumi, S., Masuda, A., et al. (2010) Resolvin E1, an Endogenous Lipid Mediator Derived from Eicosapentaenoic Acid, Prevents Dextran Sulfate Sodium-Induced Colitis. Inflammatory Bowel Diseases, 16, 87-95. >https://doi.org/10.1002/ibd.21029 Quiros, M., Feier, D., Birkl, D., Agarwal, R., Zhou, D.W., García, A.J., et al. (2020) Resolvin E1 Is a Pro-Repair Molecule that Promotes Intestinal Epithelial Wound Healing. Proceedings of the National Academy of Sciences of the United States of America, 117, 9477-9482. >https://doi.org/10.1073/pnas.1921335117 Chiang, N., Serhan, C.N., Dahlén, S., Drazen, J.M., Hay, D.W.P., Rovati, G.E., et al. (2006) The Lipoxin Receptor ALX: Potent Ligand-Specific and Stereoselective Actions in vivo. Pharmacological Reviews, 58, 463-487. >https://doi.org/10.1124/pr.58.3.4 Levy, B.D., Clish, C.B., Schmidt, B., Gronert, K. and Serhan, C.N. (2001) Lipid Mediator Class Switching during Acute Inflammation: Signals in Resolution. Nature Immunology, 2, 612-619. >https://doi.org/10.1038/89759 Godson, C., Mitchell, S., Harvey, K., Petasis, N.A., Hogg, N. and Brady, H.R. (2000) Cutting Edge: Lipoxins Rapidly Stimulate Nonphlogistic Phagocytosis of Apoptotic Neutrophils by Monocyte-Derived Macrophages. The Journal of Immunology, 164, 1663-1667. >https://doi.org/10.4049/jimmunol.164.4.1663 Gewirtz, A.T., Collier-Hyams, L.S., Young, A.N., Kucharzik, T., Guilford, W.J., Parkinson, J.F., et al. (2002) Lipoxin A 4Analogs Attenuate Induction of Intestinal Epithelial Proinflammatory Gene Expression and Reduce the Severity of Dextran Sodium Sulfate-Induced Colitis. The Journal of Immunology, 168, 5260-5267. >https://doi.org/10.4049/jimmunol.168.10.5260 Vong, L., Ferraz, J.G.P., Dufton, N., Panaccione, R., Beck, P.L., Sherman, P.M., et al. (2012) Up-Regulation of Annexin-A1 and Lipoxin A 4in Individuals with Ulcerative Colitis May Promote Mucosal Homeostasis. PLOS ONE, 7, e39244. >https://doi.org/10.1371/journal.pone.0039244 Ağış, E.R., Savaş, B. and Melli, M. (2015) Impact of Colonic Mucosal Lipoxin A 4Synthesis Capacity on Healing in Rats with Dextran Sodium Sulfate-Induced Colitis. Prostaglandins&Other Lipid Mediators, 121, 63-69. >https://doi.org/10.1016/j.prostaglandins.2015.04.001 Serhan, C.N., Gotlinger, K., Hong, S., Lu, Y., Siegelman, J., Baer, T., et al. (2006) Anti-Inflammatory Actions of Neuroprotectin D1/Protectin D1 and Its Natural Stereoisomers: Assignments of Dihydroxy-Containing Docosatrienes. The Journal of Immunology, 176, 1848-1859. >https://doi.org/10.4049/jimmunol.176.3.1848 Masterson, J.C., McNamee, E.N., Fillon, S.A., Hosford, L., Harris, R., Fernando, S.D., et al. (2014) Eosinophil-Mediated Signalling Attenuates Inflammatory Responses in Experimental Colitis. Gut, 64, 1236-1247. >https://doi.org/10.1136/gutjnl-2014-306998 Serhan, C.N., Yang, R., Martinod, K., Kasuga, K., Pillai, P.S., Porter, T.F., et al. (2008) Maresins: Novel Macrophage Mediators with Potent Antiinflammatory and Proresolving Actions. Journal of Experimental Medicine, 206, 15-23. >https://doi.org/10.1084/jem.20081880 Marcon, R., Bento, A.F., Dutra, R.C., Bicca, M.A., Leite, D.F.P. and Calixto, J.B. (2013) Maresin 1, a Proresolving Lipid Mediator Derived from Omega-3 Polyunsaturated Fatty Acids, Exerts Protective Actions in Murine Models of Colitis. The Journal of Immunology, 191, 4288-4298. >https://doi.org/10.4049/jimmunol.1202743 Gu, Z., Lamont, G.J., Lamont, R.J., Uriarte, S.M., Wang, H. and Scott, D.A. (2016) Resolvin D1, Resolvin D2 and Maresin 1 Activate the GSK3β Anti-Inflammatory Axis in TLR4-Engaged Human Monocytes. Innate Immunity, 22, 186-195. >https://doi.org/10.1177/1753425916628618 Wang, H., Shi, P., Huang, C., et al. (2016) Maresin 1 Ameliorates Iron-Deficient Anemia in IL-10(-/-) Mice with Spontaneous Colitis by the Inhibition of Hepcidin Expression though the IL-6/STAT3 Pathway. American Journal of Translational Research, 8, 2758-2766. Miranda, J., Brazil, J.C., Morris, A.H., Parkos, C.A., Quiros, M. and Nusrat, A. (2023) Maresin-2 Promotes Mucosal Repair and Has Therapeutic Potential When Encapsulated in Thermostable Nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 120, e2218162120. >https://doi.org/10.1073/pnas.2218162120 Chiang, N. and Serhan, C.N. (2020) Specialized Pro-Resolving Mediator Network: An Update on Production and Actions. Essays in Biochemistry, 64, 443-462. >https://doi.org/10.1042/ebc20200018 Orr, S.K., Colas, R.A., Dalli, J., Chiang, N. and Serhan, C.N. (2015) Proresolving Actions of a New Resolvin D1 Analog Mimetic Qualifies as an Immunoresolvent. American Journal of Physiology-Lung Cellular and Molecular Physiology, 308, L904-L911. >https://doi.org/10.1152/ajplung.00370.2014 Torricelli, A.A., Santhanam, A., Agrawal, V., et al. (2014) Resolvin E1 analog RX-10045 0.1% Reduces Corneal Stromal Haze in Rabbits when Applied Topically after PRK. Molecular Vision, 20, 1710-1716. Fredman, G. and Serhan, C.N. (2011) Specialized Proresolving Mediator Targets for RvE1 and RvD1 in Peripheral Blood and Mechanisms of Resolution. Biochemical Journal, 437, 185-197. >https://doi.org/10.1042/bj20110327 Norling, L.V., Spite, M., Yang, R., Flower, R.J., Perretti, M. and Serhan, C.N. (2011) Cutting Edge: Humanized Nano-Proresolving Medicines Mimic Inflammation-Resolution and Enhance Wound Healing. The Journal of Immunology, 186, 5543-5547. >https://doi.org/10.4049/jimmunol.1003865
Baidu
map