本研究用于天气分析的数据取自ECMWF (European Centre for Medium-Range Weather Forecasts)提供的ERA5 (ECMWF Reanalysis v5)资料
[9]
。ERA5是基于2016年运行的IFS (Integrated Forecasting System) Cy41r2产生,较ERA-Interim数据相比,ERA5在模拟大气环流和其他气象要素时具有更高的准确性和可靠性;同时ERA5改善了数据同化方法,数据的分辨率都得到了显著提升,数据的整体质量和一致性得到了提升,能够更准确地模拟大气环流的真实状态。ERA5数据提供了从低层到高层大气的详细垂直结构信息,对揭示天气系统的形成机制、分析天气事件的影响因子以及评估气候变化的影响等方面都具有重要意义。
2.2. 空气污染数据
空气污染组分主要以PM2.5为主,因此本研究使用的空气污染数据来自中国大气成分近实时追踪数据集(Tracking Air Pollution in China,简称TAP)。TAP建立了两级的机器学习模型,用于反演逐日完整覆盖的PM2.5浓度
[10]
[11]
[12]
。目前,资料时间为2000年1月开始、2023年2月结束。TAP建立了两级的机器学习模型来反演PM2.5浓度。机器学习模型在处理复杂的非线性关系和多变量交互作用方面具有优势,能够更准确地估计PM2.5浓度。这有助于减少传统监测方法的局限性,如站点分布不均或数据缺失等问题。本研究选取了2000年至2022年冬季(12月、1月、2月)京津冀地区的PM2.5数据。本文所使用的年份均为12月所在的年份。
Figure 1. The normal distribution of daily mean PM2.5 concentration (unit: μg/m3), the dashed line is PM2.5 concentration at 95% percentile--图1. 逐日区域平均PM2.5浓度(单位:μg/m3)的正态分布曲线,虚线为95%百分位阈值对应的PM2.5浓度--3. 京津冀PM2.5浓度的时空分布特征3.1. 极端污染日和极端污染过程
Figure 3. (a) Total number of 135 extreme pollution days every year from 2000 to 2022 DJF, (b) total number of 65 extreme pollution processes every year from 2000 to 2022 DJF--图3. 2000年至2022年冬季(12月、1月、2月) 135个极端污染日逐年数量,(b) 2000年至2022年冬季(12月、1月、2月) 65个极端污染过程逐年数量--
Figure 4. (a) EOF first spatial mode (EOF mode 1) of PM2.5 concentration (units: μg/m3, shading) from 2000 to 2022 DJF, (b) Mean PM2.5 concentration (units: μg/m3, shading) from 2000 to 2022 DJF, (c) Bar plot of first principal component (PC1) of PM2.5 concentration (units: μg/m3) and standardize PM2.5 concentration interannual variability (curve) from 2000 to 2022 DJF--图4. (a) 2000年至2022年冬季(12月、1月、2月) PM2.5浓度(单位:μg/m3,填色)的第一空间模态(EOF mode 1);(b) 2000年至2022年冬季(12月、1月、2月)平均PM2.5浓度(单位:μg/m3,填色)的空间分布;(c) 2000年至2022年冬季(12月、1月、2月) PM2.5浓度(单位:μg/m3)的第一主成分(PC1)柱状图和标准化PM2.5浓度年际变率(曲线)--
Figure 5. (a) Mean sea level pressure anomaly (unit: hPa, contour) on high pollution years (2002, 2004, 2006); (b) 500 hPa geopotential height anomaly (unit: dagpm, contour) on high pollution years (2002, 2004, 2006); (c) 850 hPa temperature anomaly (unit: ˚C, shading) on high pollution years (2002, 2004, 2006). Red lines denote positive values, blue lines denote negative values, the shaded area is the area that passes 95% student-t test, the orange square is the approximate position of BTH region--图5. (a) 高污染年冬季(2002年、2004年、2006年)平均海平面气压距平(单位:hPa,等值线);(b) 高污染年冬季(2002年、2004年、2006年) 500 hPa平均位势高度距平(单位:dagpm,等值线);(c) 高污染年冬季(2002年、2004年、2006年) 850 hPa气温距平(单位:℃,填色);红线代表正值,蓝线代表负值,阴影区域为通过95%显著性检验的区域,橙色方框代表京津冀区域大致位置--
Figure 6. (a) 500 hPa geopotential height average (unit: dagpm, contour) on 135 extreme pollution days; (b) 500 hPa geopotential height anomaly (unit: dagpm, contour) on 135 extreme pollution days. Red lines denote positive values, blue lines denote negative values, the shaded area is the area that passes 95% student-t test, the orange square is the approximate position of BTH region--图6. (a) 135个极端污染日的500 hPa平均位势高度(单位:dagpm,等值线);(b) 135个极端污染日的500 hPa位势高度距平(单位:dagpm,等值线),红线代表正值,蓝线代表负值,阴影区域为通过95%显著性检验的区域,橙色方框代表京津冀区域大致位置--
Figure 7. (a) 850 hPa temperature average (unit: ˚C, contour) on 135 extreme pollution days; (b) 850 hPa temperature anomaly (unit: ˚C, contour) on 135 extreme pollution days. The shaded area is the area that passes 95% student-t test, the orange square is the approximate position of BTH region--图7. (a) 135个极端污染日的850 hPa平均气温(单位:℃,填色);(b) 135个极端污染日的850 hPa气温距平(单位:℃,等值线),阴影区域为通过95%显著性检验的区域,橙色方框代表京津冀区域大致位置--
Figure 8. Zonal section (from 36.5˚N to 42˚N average) (a) Geopotential height anomaly (unit: dagpm, contour) on 135 extreme pollution days; (b) Temperature anomaly (unit: ˚C, shading) on 135 extreme pollution days; (c) Vertical velocity anomaly (unit: 10−2 Pa/s, shading) on 135 extreme pollution days; The shaded area is the area that passes 95% student-t test, the black lines is the approximate position of BTH region--图8. 纬向剖面(36.5˚N至42˚N平均) (a) 135个极端污染日的位势高度距平(单位:dagpm,等值线);(b) 135个极端污染日的气温距平(单位:℃,填色);(c) 135个极端污染日的垂直速度距平(单位:10−2 Pa/s,填色);阴影区域为通过95%显著性检验的区域,黑色直线代表京津冀区域大致位置--5. 结论和展望
References
Hou, X., Zhu, B., Kumar, K.R., Leeuw, G., Lu, W., Huang, Q. and Zhu, X. (2020) Establishment of Conceptual Schemas of Surface Synoptic Meteorological Situations Affecting Fine Particulate Pollution across Eastern China in the Winter. Journal of Geophysical Research: Atmospheres, 125, e2020JD033153. >https://doi.org/10.1029/2020JD033153
Lu, S., He, J., Gong, S. and Zhang, L. (2020) Influence of Arctic Oscillation Abnormalities on Spatio-Temporal Haze Distributions in China. Atmospheric Environment, 223, Article ID: 117282. >https://doi.org/10.1016/j.atmosenv.2020.117282
Chen, Z., Chen, D., Zhao, C., et al. (2020) Influence of Meteorological Conditions on PM
2.5Concentrations across China: A Review of Methodology and Mechanism. Environment International, 139, Article ID: 105558. >https://doi.org/10.1016/j.envint.2020.105558
Mei, M., Ding, Y., Wang, Z., Liu, Y. and Zhang, Y. (2022) Effects of the East Asian Subtropical Westerly Jet on Winter Persistent Heavy Pollution in the Beijing-Tianjin-Hebei Region. International Journal of Climatology, 42, 2950-2964, >https://doi.org/10.1002/joc.7400
Zhang, Y., Yin, Z. and Wang, H. (2020) Roles of Climate Variability on the Rapid Increases of Early Winter Haze Pollution in North China after 2010. Atmospheric Chemistry and Physics, 20, 12211-12221. >https://doi.org/10.5194/acp-20-12211-2020
An, X., Sheng, L., Liu, Q., Li, C., Gao, Y. and Li, J. (2020) The Combined Effect of Two Westerly Jet Waveguides on Heavy Haze in the North China Plain in November and December 2015. Atmospheric Chemistry and Physics, 20, 4667-4680. >https://doi.org/10.5194/acp-20-4667-2020
An, X., Chen, W., Hu, P., Chen, S. and Sheng, L. (2022) Intraseasonal Variation of the Northeast Asian Anomalous Anticyclone and Its Impacts on PM
2.5Pollution in the North China Plain in Early Winter. Atmospheric Chemistry and Physics, 22, 6507-6521. >https://doi.org/10.5194/acp-22-6507-2022
Cohen, J., Screen, A.J., Furtado, C.J., et al. (2014) Recent Arctic Amplification and Extreme Mid-Latitude Weather. Nature Geoscience, 7, 627-637. >https://doi.org/10.1038/ngeo2234
Hersbach, H., Bell, B., Berrisford, P., et al. (2020) The ERA5 Global Reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049. >https://doi.org/10.1002/qj.3803
Geng, G., Xiao, Q. Liu, S., et al. (2021) Tracking Air Pollution in China: Near Real-Time PM
2.5Retrievals from Multisource Data Fusion. Environmental Science&Technology, 55, 12106-12115. >https://doi.org/10.1021/acs.est.1c01863
Xiao, Q., Zheng, Y., Geng, G., et al. (2021) Separating Emission and Meteorological Contributions to Long-Term PM
2.5Trends over Eastern China during 2000-2018. Atmospheric Chemistry and Physics, 21, 9475-9496. >https://doi.org/10.5194/acp-21-9475-2021
Xiao, Q., Geng, G., Cheng, J., et al. (2021) Evaluation of Gap-Filling Approaches in Satellite-Based Daily PM
2.5Prediction Models. Atmospheric Environment, 244, Article ID: 117921. >https://doi.org/10.1016/j.atmosenv.2020.117921
Richman, M.B. (1981) Obliquely Rotated Principal Components: An Improved Meteorological Map Typing Technique? Journal of Applied Meteorology and Climatology, 20, 1145-1159. >https://doi.org/10.1175/1520-0450(1981)020<1145:ORPCAI>2.0.CO;2