A Novel Method for Molecular Identification of Genetic Diversity of Plant Resources in Cymbidium Sw. (Orchidaceae) Based on Taxon-Specific Variable Nucleotide Characters from Complete Chloroplast Genome
Accurate identification of genetic diversity is essential for conservation and sustainable utilization of plant resources. Plants of Cymbidium Sw. are extremely valuable for ornamental and medicinal uses as well as for scientific research. Since morphological characteristics are subjected to influences of developmental stages and environmental conditions, and there are differences among researchers in understanding and judgement on the morphological features, difficulties may occur in identification of Cymbidium plants. In this paper, 1285 taxon-specific variable nucleotide characters in the complete plastome of 3 species of Cymbidium were used as molecular traits to identify the plant genetic resource diversity of this plant genus and to compile a molecular classification key for the first time. There are differences in aspects of the amount and the base composition of variable nucleotide characters among the species. The amount of taxon-specific variable nucleotide characters in Cymbidium tracyanum L. Castle (1185) is the highest, being 22 times that of C. haematodes Lindl. (53) and 25 times that of C. tortisepalum Fukuy. (47). In C. tracyanum, the proportion of A (31.39%) or T (30.97%) is significantly higher than that of C (20.08%) or G (17.55%). The proportion of A (21.28%) is lower than that of T, C or G (25.53%~27.66%) in C. tortisepalum. In C. haematodes, the proportion of C (32.08%) is higher than that of T (18.87%), the proportion of A (26.42%) or G (22.64%) is between those of C and T which have minor differences in value. Our results indicated that taxon-specific variable nucleotide characters from the plastomes could be used for distinguishing different species successfully in Cymbidium. The status of Cymbidium plant specimens collected in the past over 120 years in China is investigated and problems and possible strategies are discussed. This study is valuable for taxonomic revision, conservation and utilization of Cymbidium plant germplasm resources.
Orchidaceae
兰科Orchidaceae植物全球约有700属近20,000种,是被子植物中单子叶演化支内物种最多的草本植物科,被认为是单子叶植物进化的一个高峰。野生种自然分布于热带、亚热带和温带地区,根据生长习性可分为地生、附生和腐生三种类型。兰科植物具有很高的食用、药用、观赏和科研价值。例如,香荚兰属Vanilla Plum. ex Mill.被广泛用于工业(食品和化妆品)原料,香荚兰Vanilla planifolia Andrews是生产优质香草调味料的重要植物。石斛属Dendrobium Sw.、天麻属Gastrodia R. Br.及手参属Gymnadenia R. Br.植物是重要的中药材。兰科植物的花姿和花色优雅,一些野生兰花资源经过深度开发已成为世界级观赏名花,如蝴蝶兰属Phalaenopsis Blume、兜兰属Paphiopedilum Pfitzer、杓兰属Cypripedium L.、独蒜兰属Pleione D. Don、兰属Cymbidium Sw.、万代兰属Vanda Jones ex R. Br.、文心兰属Oncidium Sw.、卡特兰属Cattleya Lindl.、雷丽兰属Laelia Lindl.及石斛属Dendrobium Sw.等。兰科植物的形态奇特、遗传变异较大,在物种形成、进化、传粉生物学、园艺观赏、药用价值和香料利用等方面的研究为人类提供了新认识
兰花已有2000多年的栽培历史,每年举办兰花世界博览会,促进了兰文化的交流及兰花产业的发展,但中西方的兰花文化存在显著差异。中国长期以来通过筛选兰属野生种或自然突变体用于观赏,小花型、有香味的品种较为经典。常见的国兰有:春兰Cymbidium goeringii (Rchb. f.) Rchb. f.、蕙兰Cymbidium faberi Rolfe、建兰Cymbidium ensifolium (L.) Sw.、寒兰Cymbidium kanran Makino、墨兰Cymbidium sinense Willd.、莲瓣兰Cymbidium tortisepalum Fukuy.、多花兰Cymbidium floribundum Lindl.及碧玉兰Cymbidium lowianum Rchb. f.等。兰花是十大名花(梅花、牡丹花、荷花、兰花、月季花、菊花、杜鹃花、茶花、桂花及水仙)之一。John Dominy于1853年获得首个兰花杂交种后,西方开展了通过人工杂交选育大花型为主的观赏兰花的研究,包括种内杂交、种间杂交及属间杂交。大花蕙兰品系Cymbidium Cultivars是西方的兰花观赏风格的代表类型之一。随着组织培养快速繁殖技术的成熟和普及,常年市场销售的盆栽观赏兰花种类多样。然而,由于过度利用和栖息地破坏等原因,兰科的野生植物变得稀缺或濒临灭绝,已被列入《野生动植物濒危物种国际贸易公约》(The Convention on International Trade in Endangered Species of Wild Fauna and Flora,简称CITES)的保护范围
兰属植物的研究相对较为深入,全球约70种,分类和观赏价值评价采用的性状包括:花的主色、花瓣(斑点、中部颜色、边缘颜色)、唇瓣(形态、主色、斑点、条纹)、花朵数目、花序、萼片(主色、边缘色、斑点、条纹)、侧萼的外翻程度、花被片的数目、合蕊柱中部的颜色、花序梗的姿态、花序梗的花青甙显色、叶片(数目、形态、叶表面的条纹)、香味以及花期等
然而,兰属植物的物种分布区及花期的重叠导致了野外类群存在一定程度的自然杂交,长期的驯化育种历史中频繁的人工杂交也导致遗传上中间类型的广泛存在
近年来,随着高通量测序技术的发展,叶绿体全基因组序列数据已经成为植物物种鉴定和系统发生学研究的重要工具
拉丁学名 Latin name |
中文名称 Chinese name |
序列号 Genbank accession no. |
|
1 |
Cymbidium tortisepalum Fukuy. |
莲瓣兰 |
KC876124.1 |
2 |
Cymbidium tortisepalum Fukuy. |
莲瓣兰 |
KC876125.1 |
3 |
Cymbidium tortisepalum Fukuy. |
莲瓣兰 |
MW582690.1 |
4 |
Cymbidium haematodes Lindl. |
秋墨兰 |
OQ405308.1 |
5 |
Cymbidium haematodes Lindl. |
秋墨兰 |
OQ405300.1 |
6 |
Cymbidium tracyanum L. Castle |
西藏虎头兰 |
ON969306.1 |
7 |
Cymbidium tracyanum L. Castle |
西藏虎头兰 |
KC876127.1 |
8 |
Cymbidium tracyanum L. Castle |
西藏虎头兰 |
MW582691.1 |
9 |
Dendrobium officinale Kimura & Migo |
铁皮石斛* |
MN617017.1 |
10 |
Phalaenopsis wilsonii Rolfe |
华西蝴蝶兰* |
OP723311.1 |
11 |
Phalaenopsis taenialis (Lindl.) Christenson & Pradhan |
小尖囊蝴蝶兰* |
OP723312.1 |
注:*外类群。
图1. 基于叶绿体基因组的物种特有核苷酸变异位点的兰属(兰科) 3个种的分子分类检索表
* |
A (%)** |
T (%)** |
C (%)** |
G (%)** |
Total***合计(%) |
1a |
10 (21.28) |
12 (25.53) |
13 (27.66) |
12 (25.53) |
47 (3.66/3.42) |
1b |
13 (27.66) |
14 (29.79) |
8 (17.02) |
12 (25.53) |
47 (3.66/3.42) |
2a |
14 (26.42) |
10 (18.87) |
17 (32.08) |
12 (22.64) |
53 (4.12/3.85) |
2b |
18 (33.96) |
18 (33.96) |
9 (16.98) |
8 (15.09) |
53 (4.12/3.85) |
3a |
372 (31.39) |
367 (30.97) |
238 (20.08) |
208 (17.55) |
1185 (92.22/86.18) |
3b |
276 (23.29) |
266 (22.45) |
329 (27.76) |
314 (26.50) |
1185 (92.22/86.18) |
合计 |
1285/1375 |
注:*该列的序号与检索表内的序号对应;1a为莲瓣兰,2a为秋墨兰,3a为西藏虎头兰。**核苷酸变异位点数(在4种碱基中的占比);***此列括号中,前一个数字是在物种特有变异位点总数(1285)中所占的比例;后一个数字是在全部核苷酸变异位点总数(1375)中所占的比例。
兰属供试样品的叶绿体基因组的长度为150,162 (MW582690.1,莲瓣兰Cymbidium tortisepalum Fukuy.)~156,629 (ON969306.1,西藏虎头兰C. tracyanum L. Castle)个核苷酸。在比对序列中,共检测到1375个核苷酸变异位点,占叶绿体基因组序列全长的约0.92%。其中,各物种的特有核苷酸变异位点数目合计为1285个核苷酸,占变异位点总数的93.45%。西藏虎头兰Cymbidium tracyanum (1185)的特有变异位点的数量最多,分别是秋墨兰Cymbidium haematodes Lindl.(53)和莲瓣兰Cymbidium tortisepalum (47)的特有变异位点数量的22倍和25倍。西藏虎头兰的特有变异位点中,A (31.39%)或T (30.97%)的比例明显高于C (20.08%)或G (17.55%)。莲瓣兰的特有变异位点中,A (21.28%)的比例略低于T (25.53%)、C (27.66%)或G (25.53%)的比例,T、C或G的比例差异小。秋墨兰的特有变异位点中,C (32.08%)的比例明显高于T (18.87%)的比例,A (26.42%)和G (22.64%)的比例间于C的比例与T的比例之间,差异不大(
种/变种/变型 Species/Varietas/Forma |
中文名 Chinese name |
标本份数 Amount of Herbarium Sheets |
|
1 |
Cymbidium aloifolium (L.) Sw. |
纹瓣兰 |
210 |
2 |
Cymbidium bicolor Lindl. |
南亚硬叶兰 |
27 |
3 |
Cymbidium crassifolium Wall. |
硬叶兰 |
103 |
4 |
Cymbidium cyperifolium Wall. ex Lindl. |
莎叶兰 |
123 |
5 |
Cymbidium cyperifolium var. szechuanicum (Y.S. Wu & S.C. Chen) S.C. Chen & Z.J. Liu |
1 |
|
6 |
Cymbidium dayanum Rchb. f. |
冬凤兰 |
84 |
7 |
Cymbidium eburneum Lindl. |
独占春 |
13 |
8 |
Cymbidium eburneum var. Album |
1 |
|
9 |
Cymbidium eburneum var. longzhouense Z. J. Liu & S. C. Chen |
1 |
|
10 |
Cymbidium elegans Lindl. |
莎草兰 |
52 |
11 |
Cymbidium elegans var. Elegans |
莎草兰 |
1 |
12 |
Cymbidium ensifolium (L.) Sw. |
建兰 |
347 |
13 |
Cymbidium ensiflorum var. munroanum |
1 |
|
14 |
Cymbidium ensifolium var. ensifolium f. Niveo-Marginatum |
1 |
|
15 |
Cymbidium ensifolium var. ensifolium f. Flaccidior |
1 |
|
16 |
Cymbidium ensifolium var. ensifolium f. Arcuato |
1 |
|
17 |
Cymbidium erythraeum Lindl. |
长叶兰 |
73 |
18 |
Cymbidium faberi Rolfe |
蕙兰 |
226 |
19 |
Cymbidium finlaysonianum Lindl. |
4 |
|
20 |
Cymbidium floribundum Lindl. |
多花兰 |
550 |
21 |
Cymbidium franchetii |
1 |
|
22 |
Cymbidium goeringii (Rchb. f.) Rchb. f. |
春兰 |
362 |
23 |
Cymbidium goeringii var. tortisepalum (Fukuy.) Y.S. Wu & S.C. Chen为 Cymbidium tortisepalum Fukuy.的异名 |
菅草兰 |
19 |
24 |
Cymbidium gongshanense H. Li & G. H. Feng |
贡山凤兰 |
1 |
25 |
Cymbidium guibense |
2 |
|
26 |
Cymbidium haematodes Lindl. |
秋墨兰 |
4 |
27 |
Cymbidium henryi |
绿花杓兰 |
2 |
28 |
Cymbidium hookerianum Rchb. f. |
虎头兰 |
152 |
29 |
Cymbidium hybridum |
大花蕙兰 |
4 |
30 |
Cymbidium insigne Rolfe |
美花兰 |
9 |
31 |
Cymbidium iridioides D. Don |
黄蝉兰 |
137 |
32 |
Cymbidium kanran Makino |
寒兰 |
218 |
33 |
Cymbidium lancifolium Hook. |
兔耳兰 |
274 |
34 |
Cymbidium lowianum Rchb. f. |
多根兰 |
26 |
35 |
Cymbidium micranthum Z. J. Liu & S. C. Chen |
大花杓兰 |
6 |
36 |
Cymbidium macrorhizon Lindl. |
大根兰 |
29 |
37 |
Cymbidium mastersii Griff. ex Lindl. |
大雪山 |
5 |
38 |
Crepidium multiflorum (Ames &C.Schweinf.) Szlac |
1 |
|
39 |
Cymbidium nanulum Y. S. Wu & S.C. Chen |
珍珠矮 |
1 |
40 |
Cymbidium nishiuchianum Makino ex J. M. H. Shaw |
1 |
|
41 |
Cymbidium oiwakensis Hayata |
1 |
|
42 |
Cymbidium omeiense Y. S. Wu & S. C. Chen |
1 |
|
43 |
Cymbidium pseudovirescens |
6 |
|
44 |
Cymbidium qiubeiense K. M. Feng & H. Li |
邱北冬蕙兰 |
5 |
45 |
Cymbidium serratum Schltr. |
线叶春兰 |
37 |
46 |
Cymbidium sinense Willd. |
墨兰 |
9 |
47 |
Cymbidium sinense var. argentiflorum |
4 |
|
48 |
Cymbidium sinense var. odoratum |
1 |
|
49 |
Cymbidium sinense var. sinense f. Falcatum |
1 |
|
50 |
Cymbidium sinense var. sinense f. Purpureo-Sepalum |
2 |
|
51 |
Cymbidium sinense var. sinense f. Penduliformis |
1 |
|
52 |
Cymbidium suavissimum Sander ex C. H. Curtis |
果香兰 |
2 |
53 |
Cymbidium tortisepalum var. longibracteatum (Y.S. Wu & S.C. Chen) S.C. Chen & Z.J. Liu |
春剑 |
3 |
54 |
Cymbidium tracyanum L. Castle |
西藏虎头兰 |
43 |
55 |
Cymbidium wenshanense Y. S. Wu & F. Y. Liu |
文山红柱兰 |
2 |
56 |
Cymbidium williasonii |
短叶虎头兰 |
1 |
57 |
Cymbidium wilsonii Veitch |
滇南虎头兰 |
5 |
合计 |
3198 |
中国数字植物标本库(
本研究成功开发了一种基于叶绿体基因组变异位点的兰属植物分子鉴定新方法,为兰属植物的分类修订、种质资源的保护和利用提供了重要的分子工具。经历120多年的标本采集,中国标本馆系统尚未完成对兰属植物的全球全部物种的标本收集馆藏。我们的研究结果强调了国际合作在建立全属物种分子检索表中的重要性,并建议加强数据共享,以促进全球范围内的兰属植物研究。未来工作应考虑扩大样本范围,进一步验证该方法的普适性及在其他植物类群中的应用潜力。建议制定相应的保护政策,确保兰属植物资源的可持续利用。本文报道的新方法从叶绿体基因组序列大数据中提取可用于物种分类的关键特征数据,在利用人工智能管理和利用全球植物资源多样性方面可达到清洗数据、节省算力、提高运算速度的目的。
本研究得到天津市人力资源和社会保障局、天津市人力资源建设服务中心、山东省人力资源和社会保障厅、鲁东大学、上海市人力资源和社会保障局、上海计算技术培训中心、上海海洋大学以及国家专业技术人才知识更新工程项目的大力支持。卢思聪、罗毅波、陈学达、袁国华、方爱国、严志宏、崔正及杨智慧等专家给予了热情的讨论。本调查得到国家植物标本资源库(National Plant Specimen Resource Center)平台的支持。
*通讯作者。