mse Management Science and Engineering 2167-664X 2167-6658 beplay体育官网网页版等您来挑战! 10.12677/mse.2024.134081 mse-92005 Articles 经济与管理 数字化转型对流通企业融资约束的影响研究——基于沪深A股上市流通企业的经验证据
A Study of the Impact of Digital Transformation on the Financing Constraints of Circulation Enterprises—Based on the Empirical Evidence of Shanghai-Shenzhen A-Share Listed Circulation Enterprises
1 窦文章 2 北京大学软件与微电子学院,北京 北京大学战略研究所,北京 12 07 2024 13 04 773 786 18 6 :2024 8 6 :2024 8 7 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 数字经济浪潮下,传统产业深度融合的数字化转型成为企业创新发展的必由之路。本文基于2011~2022年沪深A股上市流通企业数据,研究了数字化转型对流通企业融资约束的影响。结果显示,数字化转型能有效缓解流通企业融资约束,渠道机制研究还表明提高流通企业内部控制质量、促进流通企业供应链金融的发展可以缓解融资约束。进一步异质性分析发现,企业产权性质、地区差异、细分行业差异均对其作用效果产生影响。运用倾向得分匹配法、滞后解释变量两种方法弱化内生性问题后,以上结论仍然稳健。本研究丰富了流通企业数字化转型经济效果的相关理论,为更好地运用数字化转型缓解流通企业融资约束提供引导与启示,兼具理论与实际价值。
Under the wave of digital economy, the digital transformation with the deep integration of traditional industries has become the only way for enterprises to innovate and develop. Based on the data of Shanghai-Shenzhen A-share listed circulation enterprises from 2011 to 2022, this paper studies the impact of digital transformation on the financing constraints of circulation enterprises. The results show that digital transformation can effectively alleviate financing constraints of circulation enterprises, and the research on channel mechanism also shows that improving the quality of internal control of circulation enterprises and promoting the development of supply chain finance of circulation enterprises can alleviate financing constraints. Further heterogeneity analysis shows that the property rights of enterprises, regional differences and sub-sector differences all have an impact on the effect. After using propensity score matching method and delayed explanatory variables to weaken the endogeneity problem, the above conclusions are still robust. This study has enriched relevant theories on the economic effects of digital transformation of circulation enterprises, and provided guidance and inspiration for better using digital transformation to alleviate financing constraints of circulation enterprises, which has both theoretical and practical value.
流通企业,数字化转型,融资约束,内部控制质量,供应链金融发展
Circulation Enterprise
Digital Transformation Financing Constraints Internal Control Quality Supply Chain Finance Development
1. 引言

在企业追求创新与变革的背景下,数字化战略逐渐成为大多数企业的关键选择,流通企业也不例外。流通企业一直以来面临融资难、融资成本高的困境,并且其作为传统企业,内部控制质量普遍偏低。但因为流通企业处于经济流转的关键环节,在供应链上处于重要地位。

数字化转型可以通过将数字技术与流通企业发展相结合,提高流通企业内部控制质量和促进流通企业外部供应链金融的发展来降低企业内外部的信息不对称程度,而信息不对称程度是企业面临融资约束的主要原因。

有关流通角色的三重转变理论,对流通业数字化转型的概念及其特性进行系统阐述,流通角色的转变主要体现在三个方面:首先,流通主体由传统的产品交易者,即侧重于渠道控制的角色,转变为更加注重消费者体验和科技赋能的消费引导者;其次,流通参与者从信息不对称的市场接受者角色,转变为更加重视深度协调与决策能力的生产组织者;最后,流通实体从劳动和资本密集型的价值实现者,转变为全面融入数字技术,致力于价值提升的新型角色 [1] 。并且流通业数字化转型能够通过提升流通效率影响居民消费层次的提升 [2] ,数字技术的发展和应用对于优化现代流通体系至关重要 [3] ,随着数字经济的发展水平不断提升,其对流通行业所带来的正面影响也日益显著,有效促进了该行业的高品质成长 [4] 。得益于数字技术的推动,当代流通体系正展现出物流与商流的整合趋势,这一趋势对于推动国内经济的大规模循环具有积极的作用 [5]

然而直接将数字化转型与流通企业融资约束联系起来的文献并不多,大部分实证研究都集中在小微企业或者全体上市公司。在外部利益相关者视角下,研究发现企业数字化转型缓解融资约束的路径有三条:提高股权融资、增加商业信用以及获取政府补助 [6] 。基于创业板上市公司的数据研究显示,数字化转型不仅有助于提升中小企业的信息透明度、降低融资成本,还能增强其创新能力,从而显著缓解其融资约束压力 [7] 。数字化转型还显著提高了企业全要素生产率,而缓解企业融资约束是数字化转型提升企业全要素生产率的重要路径 [8] 。在物流行业的研究中发现,数字化转型显著减轻了物流企业的融资约束程度,而信息利用效率的提升和代理成本的降低在这一过程中发挥了重要的中介作用 [9] 。因此,数字化转型有助于降低信息不对称和代理成本,从而缓解融资约束。但不难发现,已有文献并未单独针对流通业整个行业进行实证研究,需要结合流通业的特点来做进一步的研究。本文拟对“数字化转型–流通企业融资约束”的影响机制和影响条件进行检验,为流通企业的数字化转型与融资约束提供新的研究结论。

与现有文献相比,本文的贡献之处在于:首先,以往文献对流通企业的数字化转型和流通企业的融资约束实证研究并不多,本文以沪深A股上市流通企业作为研究对象,丰富了数字化转型与融资约束的研究领域。其次,本文增加了九州通作为流通业的典型代表,丰富了流通业的经验研究案例。最后,以往文献在数字化转型对融资约束的作用机制上多集中在信息效应和治理效应上,本文在信息效应和治理效应的基础上,针对流通企业增加了内部控制质量机制和供应链金融的发展机制,丰富了其作用机制的研究。

2. 理论分析与研究假设 2.1. 数字化转型对流通企业融资约束的影响

造成流通企业融资约束的原因,主要有包括三方面:一是融资双方存在代理成本;二是融资双方存在交易成本;三是融资双方信息不对称。

根据信息不对称理论和内部控制理论,流通企业进行数字化转型可以增强内部控制质量,进而降低融资双方的信息不对称程度。根据代理理论和内部控制理论,流通企业进行数字化转型可以增强内部控制质量,进而降低融资双方的代理成本。因此流通企业数字化转型可以通过提高企业内部控制质量来缓解融资约束。

根据交易成本理论、信息不对称理论、优序融资理论以及利益相关者理论,流通企业进行数字化转型可以促进其供应链金融的发展,进而降低融资双方交易成本和减少融资双方信息不对称程度。因此数字化转型可以通过促进流通企业供应链金融的发展来缓解其融资约束。

综上,提出本文的假设1:

H1:数字化转型可以缓解流通企业融资约束。

2.2. 数字化转型对流通企业融资约束的影响路径分析

第一,数字化转型有助于提高流通企业的内部控制质量,从而缓解其融资约束。首先,数字化转型能够提高流通企业内部控制质量。研究发现,企业数字化转型后,内部控制质量显著提升 [10] ,认为通过提升管理效能、强化风险管理手段以及压缩代理成本空间,数字化转型有效地提升了企业内部控制的质量标准 [11] 。其次,提高流通企业内部控制质量能够缓解其融资约束。具体而言,通过强化内部控制系统并保障信息披露的合规性与真实性,企业可以有效减少与投资者之间的信息不对称问题,从而对缓解融资约束产生积极影响 [12] 。并且上市公司提升内部控制质量能够显著减轻融资约束,并且这种缓解效应受到企业产权结构和制度背景的调节。特别值得关注的是,在私营或民有企业中,内部控制对于缓解融资约束的效果尤为显著 [13] 。企业成功建立完善的内部控制体系将传递出积极的经营管理信号,增强市场对企业的认知度和信任度,提高市场响应度,进而增强企业的竞争优势并减轻融资约束 [14] 。因此,基于信息不对称理论和代理理论,由于企业了解自身的信息远远大于企业外部投资者,并且由于股东债务人和企业经营者之间存在代理成本,所以会导致企业融资成本增加,引起企业融资约束。又根据内部控制理论,企业增强内部控制后,可以缓解企业信息不对称程度和降低代理成本。

综上,提出假设2:

H2:数字化转型有助于提高流通企业的内部控制质量,从而缓解其融资约束。

第二,数字化转型有助于促进流通企业的供应链金融的发展,从而缓解其融资约束。首先,数字化转型能够促进流通企业供应链金融的发展。具体来说,企业若能主动实施数字化改革,并与金融机构的数字化规范相匹配,便能够畅通银行与企业间的数据流通路径,显著减少双方信息不对称的问题,进而推动供应链金融的繁荣。此外,数字化改革还能增强企业在供应链中的影响力和信誉,为供应链金融提供支持。最终,数字化改革通过加强供应链内企业间的联系,进一步促进了供应链金融的成长。其次,促进流通企业供应链金融的发展能够缓解其融资约束。研究表明,供应链金融手段成功地降低了信贷市场固有的信息不对称程度,为中小企业搭建了更具可行性与适应性的融资渠道,进而有助于克服其在常规信贷环境中所面临的一系列融资壁垒 [15] 。供应链金融在降低企业资金获取障碍方面具有显著作用 [16] ,不同的金融发展环境以及企业内部产权配置格局均可能对供应链金融在减轻企业融资压力方面的效果产生不同的影响 [17] 。中国中小企业在当前的发展阶段中普遍面临着融资约束的困境,这些企业在现金流量与其运营及财务绩效之间的敏感性上表现出了明显的特点:它们需要依赖稳健而精细的现金流保留与管理策略,以应对未来可能出现的投资需求 [18] 。通过对流通企业数据的研究发现,相比于传统融资,供应链融资风险规避能力更强,能从减少信息不对称、降低交易成本、控制交易风险等三方面缓解流通企业面临的融资约束 [19] 。因此,基于交易成本理论和信息不对称理论,信息不对称和融资交易成本的存在会使企业面临融资约束,而供应链金融的发展可以减少融资双方的信息不对称并且降低融资交易成本。根据利益相关者理论和优序融资理论,促进供应链金融的发展可以加深企业上下游之间的联系,优化资源配置并且扩展企业外源融资渠道。因此缓解融资约束的另一种方式就是促进供应链金融的发展。

综上,提出假设3:

H3:数字化转型有助于促进流通企业的供应链金融的发展,从而缓解其融资约束。

变量与假设的关系如 图1 所示:

Figure 1. The relationship between the variable and the hypothesis--图1. 变量与假设之间的关系--
3. 研究设计 3.1. 样本选取与数据来源

本文采取2012~2022年间沪深A股流通企业作为研究对象。一般认为,在2012年之后,企业普遍进行数字化转型,因此以2011年为研究起点。而在本文展开研究时,企业2023年年报还未发布,因此本文数据截止时间为2022年。同时为了使本文所使用的数据能够更有效地反应结果、排除一些异常情况所带来的偏差,本文对数据做以下处理:1) 特别处理了被标记为ST、*ST或存在显著财务数据异质性的公司,以消除这些非典型特征可能带来的分析偏差;2) 鉴于数据的一致性和完整性对于研究的重要性,本研究进一步剔除了那些关键变量信息缺失的企业案例;3) 本研究对连续型变量实施了严谨的处理策略,具体采用了1%的Winsorization处理技术。这一技术通过对各个连续变量分布两端最极端的1%数据点进行修剪,有效降低了异常值对分析结果的干扰。经过这一系列严格且细致的样本筛选步骤,本研究最终筛选出了共计1835个高质量的观测记录。本文的被解释变量融资约束、解释变量数字化转型指数均来自国泰安(CSMAR)数据库,中间变量内部控制指数来自迪博(DIB)数据库,其余数据均来自国泰安(CSMAR)数据库。

3.2. 变量说明 <xref></xref>Table 1. Primary variable definitionTable 1. Primary variable definition 表1. 主要变量定义

类型

变量指标

指标符号

变量内涵

解释变量

数字化转型指数

DIGIT

国泰安数据库

被解释变量

融资约束指数

FC

国泰安数据库

中介变量

内部控制指数

IIC

迪博数据库

供应链金融发展指数

SUPFIN

(短期借款 + 应付账款 + 应付票据)/年末总资产

控制变量

资产负债率

LEV

年末总负债/年末总资产

营收增长率

GROW

(本年营收 − 上年营收) − 1

续表

股权集中度

TOP1

年末第一大股东持股数量/总股数

现金流比率

CASH

经营活动现金流量净额/年末总资产

上市年限

AGE

(当年年份 − 上市年份 + 1)取自然对数

独董比例

BIND

独立董事人数/董事总人数

净资产收益率

ROE

净利润/股东权益

托宾Q值

TQ

市值/(资产总计 − 无形资产净额 − 商誉净额)

两职合一

DUAL

董事长总经理一人兼任 = 1,否则0

产权性质

SOR

国企 = 1,否则0

年份

year

控制年份固定效应

行业

Industry

控制行业固定效应

3.3. 模型设计

对为了探究数字化转型与流通企业融资约束之间的关系,本文设定以下固定效应模型:

FC i , t = β 0 + β 1 DIGIT i , t + β μ controls i , t + year + Industry + ε i , t (1)

其中,下标i、t分别表示企业、年份。被解释变量FCi,t表示流通企业i在第t年的融资约束水平。解释变量DIGITi,t表示流通企业i在第t年的数字化转型程度。Controlsi,t包括10个描述公司财务特性及公司治理特性的指标。β0为截距项,β1刻画了数字化转型对流通企业融资约束的影响效果,βμ分别为各控制变量的系数(μ = 2,……,11),εi,t为随机误差项。

4. 实证分析 4.1. 描述性统计

表2 是本文主要变量的描述性统计分析。在2012至2022年间,流通企业共用1835个年度观测值。由 表2 可知,流通企业融资约束(FC)平均值为0.320,中位数为0.254,中位数小于平均值,说明大部分流通企业面临的融资约束处于流通行业平均值以下,但仍有小部分流通企业面临的融资约束较大。流通企业数字化转型指数(DIGIT)平均值和中位数相差不大,说明流通企业数字化转型分布比较均衡,但整体数字化转型程度水平较低。

<xref></xref>Table 2. Descriptive statistics of major variablesTable 2. Descriptive statistics of major variables 表2. 主要变量的描述性统计

变量

N

Mean

SD

Min

p50

Max

FC

1835

0.320

0.253

0.004

0.254

0.901

DIGIT

1835

0.349

0.077

0.236

0.346

0.552

LEV

1835

0.525

0.188

0.099

0.534

0.892

GROW

1835

0.125

0.356

−0.555

0.074

2.300

TOP1

1835

0.381

0.156

0.113

0.362

0.763

CASH

1835

0.048

0.067

−0.178

0.051

0.240

续表

AGE

1835

2.549

0.708

0.693

2.773

3.401

BIND

1835

0.369

0.051

0.308

0.333

0.571

ROE

1835

0.072

0.104

−0.484

0.081

0.310

TQ

1835

1.665

0.836

0.820

1.390

5.452

DUAL

1835

0.163

0.369

0.000

0.000

1.000

SOE

1835

0.644

0.479

0.000

1.000

1.000

4.2. 基础回归结果分析

本文的基准回归结果如 表3 所示。其中第(1)列展示了数字化转型指数仅对融资约束进行回归的结果,其中DIGIT的系数为−0.522,在1%的水平上显著为正,即数字化转型程度越高,其缓解流通企业融资约束的效果越好。在引入企业层级的控制变量后,如表中第(2)列所示,数字化转型指标(DIGIT)的回归系数调整为−0.396,尽管这一系数的绝对值相比之前有所减小,但它依旧在1%的统计显著性水平上保持显著。这种变化可能归因于控制变量对融资约束中某些潜在影响因素的吸收作用。在进一步的分析中,如表中第(3)列所展示,当研究引入年度和行业固定效应后,数字化转型变量的回归系数为−0.492,且依旧在1%的显著性水平上具备统计有效性。这一发现进一步强化了数字化转型对于缓解流通企业融资约束效应的观点,为假设H1提供了坚实的实证支持。

<xref></xref>Table 3. Baseline regression resultTable 3. Baseline regression result 表3. 基准回归结果

变量

(1)

(2)

(3)

FC

FC

FC

DIGIT

−0.522***

−0.396***

−0.492***

(−3.057)

(−3.556)

(−4.257)

LEV

−0.682***

−0.777***

(−12.750)

(−15.372)

GROW

0.001

0.000

(0.111)

(0.009)

TOP1

−0.274***

−0.190**

(−3.708)

(−2.595)

CASH

−0.514***

−0.229***

(−5.509)

(−2.626)

AGE

−0.033**

−0.042***

(−2.036)

(−2.620)

BIND

−0.031

−0.009

(−0.190)

(−0.061)

续表

ROE

−0.171**

−0.257***

(−2.281)

(−3.661)

TQ

0.060***

0.050***

(4.310)

(3.649)

DUAL

0.045*

0.038*

(1.850)

(1.827)

SOE

−0.066***

−0.029

(−2.626)

(−1.082)

Constant

0.502***

0.990***

1.163***

(8.181)

(10.663)

(11.905)

Observations

1835

1835

1835

R-squared

0.025

0.462

0.551

Industry-Fixed

No

No

Yes

Year-Fixed

No

No

Yes

F

9.348

48.59

37.26

注:Robust t-statistics in parentheses,***p < 0.01,**p < 0.05,*p < 0.1,下同。

在第(3)列中,从控制变量来看,资产负债率(LEV)、第一大股东股权比例(TOP1)、现金流比例(CASH)、上市年限(AGE)、权益净利率(ROE)在1%的水平上显著为负,表明资产负债率越高、股权越集中、现金流占比越大、上市年限越长、盈利能力越强的流通企业面临的融资约束越小,而托宾Q值、两职合一的系数显著为正,表明其对流通企业的融资困境有抑制作用。上述系数的显著性结果比较符合常识,在一定程度上证明了本文控制变量选取的合理性。

4.3. 机制检验

为探究数字化转型缓解流通企业融资约束的影响机制,本部分选取流通企业内部控制质量、供应链金融作为中介变量,采用采取江艇提出的两步法构建以下模型进行机制分析:

M i , t = α 0 + α 1 DIGIT i , t + α μ controls i , t + year + Industry + ε i , t (2)

其中,Mi,t表示中介变量。运用江艇方法的重点是探究中介变量和解释变量之间的因果关系 [24] ,而式(2)就证明了两者之间的关系。而中介变量Mi,t和被解释变量的关系应该是显而易见的,这样可以避免温忠麟第三步方法的内生性 [25] 。本文在理论分析部分对中介变量和被解释变量的关系进行了详细的文献证明,因此在接下来的机制分析中,本文主要展示式(2)的回归结果。

表4 第(1)列中,数字化转型对流通企业内部控制质量的系数显著为正,说明数字化转型能够有效提高流通企业的内部控制质量,证明了本文的猜想,即数字化转型能够提高流通企业内部控制质量。以上结论说明,数字化转型可以通过信息技术的运用来降低流通企业内部的信息不对称程度,进而提高流通企业的内部控制质量,而内部控制的提高可以通过降低企业与资本双方的信息不对称程度和降低双方的代理成本来缓解流通企业面临的融资约束,验证了本文的假设H2。

<xref></xref>Table 4. Mechanism analysisTable 4. Mechanism analysis 表4. 机制分析

变量

(1)

(2)

IIC

SUPFIN

DIGIT

0.089*

0.211***

(1.676)

(2.952)

Controls

Yes

Yes

Constant

0.648***

0.062

(15.278)

(1.149)

Observations

1835

1835

R-squared

0.210

0.624

Industry-Fixed

Yes

Yes

Year-Fixed

Yes

Yes

F

8.242

24.05

表4 第(2)列中,数字化转型指数对流通企业供应链金融的发展指数的系数显著为正,证明了本文的猜想,即数字化转型能够促进流通企业供应链金融的发展。以上结论说明,流通企业数字化转型可以通过信息技术的运用来降低融资双方的信息不对称程度并且提高企业与供应链企业的紧密程度,进而促进供应链金融的发展。而供应链金融的发展可以通过降低企业与资本双方的信息不对称程度和降低双方的交易成本来缓解企业面临的融资约束,验证了本文的假设H3。

4.4. 进一步分析

为探究其他因素在“数字化转型–流通企业融资约束”关系中所产生的异质性影响,本部分选取了流通企业细分行业差异、地区差异、产权性质等指标进行异质性检验,其结果见下 表5 所示。

<xref></xref>Table 5. Further analysisTable 5. Further analysis 表5. 进一步分析

变量

细分行业

地区差异

产权性质

批发、零售

运输

邮政、仓储

东部

中西部

非国企

国企

FC

FC

FC

FC

FC

FC

FC

DIGIT

−0.521***

−0.668***

0.172

−0.374***

−0.685***

−0.674***

−0.444***

(−3.999)

(−2.659)

(0.419)

(−2.769)

(−3.091)

(−3.593)

(−3.080)

Controls

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Constant

0.900***

1.178***

1.080***

1.184***

0.993***

1.180***

0.931***

(8.288)

(8.539)

(5.705)

(12.063)

(4.578)

(9.211)

(6.141)

Observations

1107

636

92

1279

556

654

1181

R-squared

0.593

0.486

0.871

0.600

0.494

0.633

0.505

Industry-Fixed

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Year-Fixed

Yes

Yes

Yes

Yes

Yes

Yes

Yes

细分行业差异:深入剖析流通企业的微观特性,特别关注行业属性如何潜在地作用于其融资约束状况。为此,我们对样本进行了精细的分类处理,将其划分为三大核心子行业板块:批发与零售贸易行业、交通运输行业以及仓储与邮政服务业。通过分别针对这些细分子行业开展独立的回归分析,回归结果见 表5 所示。结果显示,数字化转型对流通企业融资约束的缓解作用在运输业最显著,其次是批发、零售业,对邮政仓储业并没有产生显著影响。

地区差异:在中国,各地区在资源条件、信息化水平以及政策环境等方面呈现出显著的非均衡性特征,这些地域差异对数字技术的运用与推广产生了深远影响。本研究基于地理区位,将上市流通企业划分为东部与中西部两大区域,并分别对这些区域的样本进行了独立的回归分析。结果显示东部地区流通企业和中西部地区流通企业的数字化转型指数的系数均为负,并且都在1%的水平上显著,说明数字化转型对东部流通企业和中西部流通企业均有显著的缓解作用。为了进一步分析数字化转型对两者之间缓解作用的区别,本文对两者进行异质性组间系数差异性检验,抽样1000次得出β0− β1= 0.311,p = 0.005 < 0.01,这验证了两者之间的差异性。以上结果说明,在流通企业中,数字化转型对中西部地区企业融资约束的缓解作用大于对东部地区企业融资约束的缓解作用。

产权性质:在流通行业中,国企大部分承担着交通运输的重要职能,因此得到了国家及地方政府的大力支持,因此普遍面临的融资约束要小于非国企。并且流通企业中,零售批发业大都属于非国企,它们对数字化转型渴望一般要高于流通国企,因此,它们进行数字化转型的意愿可能更强烈。在此背景下,本研究旨在深入探讨流通企业在数字化转型过程中,其所有权属性对转型效果的具体影响及作用机制。为此,本文分别检验国企和非国企的流通企业数字化转型对融资约束的影响。回归结果如 表5 所示,国企非国企中数字化转型指数的系数均为负,并且都在1%的水平上显著,说明流通企业数字化转型对国企非国企的融资约束都有显著的缓解作用。为了进一步区分两者之间缓解程度的差别,本文对两者进行异质性组间系数差异性检验,抽样1000次得出非国企、国企数字化转型指数系数间差异:β0− β1= −0.230,p = 0.025 < 0.05,这验证了两者之间的差异性。以上结果说明,在流通企业中,非国企数字化转型对融资约束的缓解作用大于国企数字化转型对融资约束的缓解作用。

5. 稳健性分析 5.1. 滞后解释变量或提前被解释变量

在研究数字化转型对流通企业融资约束问题的效应时,我们必须充分考虑潜在的双向因果联系。为了在一定程度上减轻反向因果的内生性干扰问题,本文将数字化转型指数(DIGIT)进行滞后处理,分别把t − 1期和t − 2期的解释变量放入基准模型中进行回归,结果分别为 表6 第(1)列、第(2)列。本文也展示了将被解释变量分别提前1或2期的回归结果,分别为第(3)列和第(4)列。如 表6 所示,不管是解释变量滞后还是被解释变量提前,结果都在1%的水平上显著为负,进一步验证了假设H1:数字化转型能缓解流通企业融资约束。

<xref></xref>Table 6. Delayed explanatory variableTable 6. Delayed explanatory variable 表6. 滞后解释变量

变量

(1)

(2)

(3)

(4)

FC

FC

FCt+1

FCt+2

DIGITt−1

−0.478***

(−3.914)

续表

DIGITt−2

−0.431***

(−3.343)

DIGITt

−0.486***

−0.457***

(−4.127)

(−3.711)

Controls

Yes

Yes

Yes

Yes

Observations

1511

1290

1511

1290

R-squared

0.529

0.503

0.530

0.494

Industry-Fixed

Yes

Yes

Yes

Yes

Year-Fixed

Yes

Yes

Yes

Yes

F

28.30

25.42

29.96

23.65

5.2. 倾向得分匹配法

本研究旨在消除函数形式设定误差和样本选择偏误的潜在影响,因此采用了倾向得分匹配(PSM)技术。具体来说,我们依据流通企业数字化转型程度(DIGIT)的年份行业内均值作为基准,将高于此均值的企业归类为处理组,并赋予虚拟变量Treat值为1;而低于均值的企业则被归入对照组,并赋予Treat值为0。然后将一系列控制变量作为协变量进行logit回归,采用1:3进行近邻匹配。 表7 展示了各变量匹配前后的平衡情况,匹配前后各个变量的均值之间没有明显差异,两组样本各协变量的标准化偏差均小于5%,p值变大,且p > Chi2由0.000变为0.985满足平行性假设,表明协变量和匹配方法的选取有效。

<xref></xref>Table 7. Balance testTable 7. Balance test 表7. 平衡性检验

变量

Unmatched

均值

偏差

T检验

Matched

Treated

Control

%bias

bias

t

p > t

LEV

U

0.5469

0.53027

9.2

1.83

0.068

M

0.5469

0.55072

−2.1

77

−0.43

0.666

GROW

U

0.13681

0.1271

2.7

0.54

0.592

M

0.13681

0.13501

0.5

81.5

0.1

0.921

TOP1

U

0.3709

0.37763

−4.4

−0.86

0.387

M

0.3709

0.37244

−1

77.2

−0.2

0.841

CASH

U

0.04674

0.04853

−2.7

−0.53

0.596

M

0.04674

0.04791

−1.7

34.6

−0.36

0.722

AGE

U

2.6003

2.5541

6.8

1.35

0.178

M

2.6003

2.5921

1.2

82.1

0.25

0.803

BIND

U

0.37078

0.36847

4.5

0.89

0.372

M

0.37078

0.36969

2.1

52.8

0.43

0.668

ROE

U

0.07299

0.0732

−0.2

−0.04

0.968

M

0.07299

0.07435

−1.3

−535.3

−0.26

0.796

TQ

U

1.6638

1.6794

−1.8

−0.36

0.715

M

1.6638

1.6462

2.1

−12.3

0.42

0.673

平均处理效应(ATT)的结果为−0.264 (p = 0.000),在1%的统计水平上显著,与前文的结论一致。计算出倾向匹配得分作为权重,然后进行回归分析,回归结果如 表8 所示。数字化转型(DT)的系数为−0.463,仍通过了1%的显著性检验,说明克服内生性问题后本文结论依然成立。

<xref></xref>Table 8. Post equilibrium regressionTable 8. Post equilibrium regression 表8. 平衡后回归

变量

FC

DIGIT

−0.463***

(−3.972)

Controls

Yes

Constant

1.137***

(11.429)

Observations

1835

R-squared

0.536

Industry-Fixed

Yes

Year-Fixed

Yes

F

33.65

5.3. 其他稳健性检验

为保证结果稳健性,本文首先用替代被解释变量方法,使用KZ指数代替FC指数进行回归,回归结果如 表9 第(1)、第(2)列。其次,用替代解释变量方法,使用DT指数替代DIGIT指数进行回归,其中DT指数借鉴吴非所使用的文本分析法 [26] ,通过统计企业年报中与数字化转型相关关键词出现的频次来表示企业数字化转型程度。回归结果如 表9 第(3)、第(4)列。最后,通过缩短样本年份方法,首先尝试把样本区间改为2013~2022年再进行回归,回归结果如 表9 第(5)列;其次,使用2013~2019年的样本,回归结果如 表9 第(6)列。从 表9 可以看出,6列的结果都是在1%的显著性水平上为正,验证了本文的核心结论H1:数字化转型能够缓解流通企业融资约束。再次证明了本文结论的稳健性。

<xref></xref>Table 9. Other robust regression resultsTable 9. Other robust regression results 表9. 其他稳健性回归结果

变量

KZ替代FC

DT替代DIGIT

缩短样本区间

(1)

(2)

(3)

(4)

(5)

(6)

KZ

KZ

FC

FC

FC

FC

DIGIT/DT

−1.966***

−0.984*

−0.022***

−0.034***

−0.574***

−0.525***

(−3.748)

(−1.758)

(−2.985)

(−4.348)

(−5.001)

(−4.329)

Controls

Yes

Yes

Yes

Yes

Yes

Yes

Constant

−0.150

0.140

0.905***

1.059***

1.161***

1.173***

(−0.436)

(0.388)

(9.901)

(11.574)

(11.438)

(10.716)

Observations

1835

1835

1835

1835

1599

1023

续表

R-squared

0.723

0.796

0.459

0.554

0.543

0.569

Industry-Fixed

No

Yes

No

Yes

Yes

Yes

Year-Fixed

No

Yes

No

Yes

Yes

Yes

F

225.3

115.1

47.43

37.76

36.07

32.23

6. 结论

本文首先从理论角度梳理了有关流通企业数字化转型的相关文献以及数字化转型影响流通企业融资约束的内在机理,其次从实证层面检验了数字化转型对流通企业融资约束的影响。总体而言,本文的主要结论如下:1) 从基准回归结果可知,数字化转型能够有效缓解流通企业融资约束。2) 中介效应检验发现,数字化转型可以通过提高流通企业内部控制质量、促进流通企业供应链金融的发展的机制缓解其融资约束。3) 异质性分析结果显示,在非国企、中西部、运输业的样本中,数字化转型能够更有效地缓解流通企业的融资约束。

本文的研究结论具有如下政策建议。第一,对于流通企业来说,首先,流通企业要积极推进数字化转型,推动企业数字化成果落地。其次,要注重流通企业数字化转型缓解融资约束的两个路径,重点通过数字化转型来提升企业内部的内部控制质量、促进企业外部的供应链金融的发展,进一步缓解融资约束。第二,对于政府来说,首先,政府可以推出“云优先”政策,鼓励流通企业使用云计算服务,为流通企业提供初期上云的补贴和技术支持;其次,政府应资助大数据分析和人工智能的研发项目,特别是在供应链优化和市场预测方面;再其次,政府应制定物联网设备和数据标准,促进设备间的互联互通,提高物流和库存管理的智能化水平;再其次,政府应推动区块链技术在供应链金融中的应用,提高交易透明度,降低欺诈风险;再其次,政府应对流通企业在数字化转型过程中的研发投入给予税收减免,鼓励流通企业持续创新;最后,政府应在特定区域建立数字化转型示范区,集中展示数字化技术在流通企业中的应用成果,并为示范区内的流通企业提供政策咨询、技术支持和市场对接服务。

References 俞彤晖, 陈斐. 数字经济时代的流通智慧化转型: 特征、动力与实现路径[J]. 中国流通经济, 2020, 34(11): 33-43. 王玉香, 徐洪波. 数字经济赋能下流通业效率对居民消费升级的影响——基于消费扩容提质的视角[J]. 商业经济研究, 2021(16): 40-44. 唐任伍, 张景森. 现代流通体系推动共同富裕实现的功能、作用和路径[J]. 中国流通经济, 2022, 36(1): 3-8. 陈泽楷, 郭文星. 数字经济助推我国流通业高质量发展探讨[J]. 商业经济研究, 2022(6): 24-27. 周若涵. 流通数字化转型背景下商流与物流融合发展研究[J]. 商业经济研究, 2022(7): 20-23. 苑泽明, 于翔, 李萌, 刘冠辰. 数字化转型如何影响企业的融资约束[J]. 会计之友, 2022(19): 99-108. 王敬勇, 孙彤, 李珮, 龚钰轩. 数字化转型与企业融资约束——基于中小企业上市公司的经验证据[J]. 科学决策, 2022(11): 1-23. 花俊国, 刘畅, 朱迪. 数字化转型、融资约束与企业全要素生产率[J]. 南方金融, 2022(7): 54-65. 廖石云, 许和连. 数字化转型与物流企业融资约束: 作用机制与微观证据[J]. 商业经济研究, 2023(18): 95-98. 张钦成, 杨明增. 企业数字化转型与内部控制质量——基于“两化融合”贯标试点的准自然实验[J]. 审计研究, 2022(6): 117-128. 赵茂, 求汝钰, 杨岗. 数字化转型对企业内部控制质量的影响——基于中国上市公司数据的实证[J]. 现代金融, 2023(12): 3-10. 程小可, 杨程程, 姚立杰. 内部控制、银企关联与融资约束——来自中国上市公司的经验证据[J]. 审计研究, 2013(5): 80-86. 董育军, 丁白杨. 产权性质、内部控制与融资约束[J]. 中国注册会计师, 2015(6): 32-38. 陈作华, 方红星. 融资约束、内部控制与企业避税[J]. 管理科学, 2018, 31(3): 125-139. 张伟斌, 刘可. 供应链金融的发展能降低中小企业融资约束吗?——基于中小上市公司的实证分析[J]. 经济科学, 2012(3): 108-118. 王立清, 胡滢. 供应链金融与企业融资约束改善——基于产融结合与战略承诺的调节作用分析[J]. 中国流通经济, 2018, 32(6): 122-128. 顾群. 供应链金融缓解融资约束效应研究——来自科技型中小企业的经验证据[J]. 财经论丛, 2016(5): 28-34. 朱玮玮. 供应链金融能降低融资约束吗? [J]. 中国注册会计师, 2022(4): 54-57. 毛怡萱. 供应链金融对流通企业融资约束的影响研究[J]. 全国流通经济, 2023(3): 148-152. 况学文, 施臻懿, 何恩良. 中国上市公司融资约束指数设计与评价[J]. 山西财经大学学报, 2010, 32(5): 110-117. 张悦玫, 张芳, 李延喜. 会计稳健性、融资约束与投资效率[J]. 会计研究, 2017(9): 35-40, 96. 顾雷雷, 郭建鸾, 王鸿宇. 企业社会责任、融资约束与企业金融化[J]. 金融研究, 2020(2): 109-127. 陈峻, 郑惠琼. 融资约束、客户议价能力与企业社会责任[J]. 会计研究, 2020(8): 50-63. 江艇. 因果推断经验研究中的中介效应与调节效应[J]. 中国工业经济, 2022(5): 100-120. 温忠麟, 叶宝娟. 中介效应分析: 方法和模型发展[J]. 心理科学进展, 2014, 22(5): 731-745. 吴非, 胡慧芷, 林慧妍, 等. 企业数字化转型与资本市场表现——来自股票流动性的经验证据[J]. 管理世界, 2021, 37(7): 130-144.
Baidu
map