Research on the Identification of High-Speed Commuter Channels in Mega-Cities Based on Multi-Source Data
With the vigorous development of mega-city construction, people’s travel distance is increasing. High-speed has become the primary way for more and more people to choose to travel, which leads to some high-speed congestion. In this paper, the high-speed ETC bayonet data, ETC bayonet basic data and highway network data are used to identify the high-speed commuter channel of Jinan City by using K-means++ clustering, and the spatial and temporal characteristics of commuter flow are analyzed by combining the data of Jinan high-speed road network. The results show that: 1) The clustering method is used to identify 19 two-way commuter high-speed sections and 2 one-way commuter high-speed sections. 2) The time traffic characteristics of Jinan high-speed commuter section show a double hump type. There are more vehicles in the morning peak and evening peak, and fewer vehicles in the flat peak, which is in line with the characteristics of commuter channel traffic flow. 3) The high-speed commuter channel presents symmetrical C-type distribution characteristics, and its commuter channel is mainly G35 in the north of Jinan, G2001 in the east and south of Jinan, and also involves the section of S8105 Huashan hub to Cuizhaixi hub and G2 Caofan interchange and Ganggou interchange. Most of its commuter channels are shuttled around the main residential areas, working areas and hubs connecting urban expressways. 4) The traffic flow of the commuter channel mainly shows that the traffic flow of G35 high-speed traffic accounts for a relatively high proportion, followed by the traffic flow of the G2001 east ring road section is above 1000 vehicles/h. Through the research of this paper, we can better understand the operation characteristics of expressways, provide a scientific basis for traffic management departments, improve traffic efficiency, improve travel experience, and promote sustainable urban development.
Traffic Planning
当前随着各大城市的蓬勃发展,城市跨度不断增大,高速公路通勤车辆逐渐增多,引起高速交通需求不断增大,导致高速拥堵现象时常发生。在大量的高速ETC卡口数据中蕴藏着海量的高速公路交通运行特征信息,通过某些方法对高速数据进行挖掘,可以了解到高速通勤通道交通流的特征,解决高速拥堵问题。
目前国内外对于道路通勤的研究还主要注重于高速公路通勤者识别,如马新露等
本文以济南市ETC卡口数据、ETC卡口基础信息数据及高速公路道路网数据,从全局角度对通勤车流的特征进行研究,根据通勤车流出行的时间特征建立模型来识别高速公路日常通勤车辆,并进一步对济南市高速通勤通道的时空特征进行分析,对于提高城市交通系统效率和缓解交通问题具有重要的意义。
本研究对象为济南市高速公路。截至2023年7月,济南全市公路通车总里程达到18,294公里。其中,高速公路通车里程达795公里,京台高速济南至泰安段(改扩建)、济南至高青高速、大西环3个项目建成通车,高青至商河、济南至微山等6条高速公路相继开工,济潍高速、大北环等项目加快推进,“二环一联十六射”高速公路网加快形成。济南市高速公路分布图见
本文基于济南市某月高速ETC卡口数据,共计约1200万条,本文高速路网数据利用Python爬取相关济南市路网数据。高速ETC收费数据数据格式见
字段名称 |
说明 |
ETC卡口名称 |
车辆通过的高速卡口名称 |
通过时间 |
车辆本次通过卡口的时间 |
车牌号 |
车辆的车牌信息(鲁A……) |
车型 |
客一:1;客二:2;客三:3;客四:4;货车:10;货一:11;货二:12;货三:13;货四:14;货五:15;专一:21;专二:22;专三:23;专四:24 |
车种 |
普通车:0;军警车:8;紧急车:10;绿通车:21;应急车:26 |
本文在研究通勤流识别的过程中套引用ETC卡口车流数据、ETC卡口基础信息数据及高速路网数据,基于模糊聚类的方法进行收费站点类型识别,同时基于改进的K均值聚类法对通勤者进行识别,结合识别出的通勤者及高速收费站点类型对通勤流的出行特征进行分析。其分析识别流程见
对于高速通勤类型分类,按照其特点、高速客流时序特点情况进行分类,本文选取的ETC卡口数据聚类指标及其特征见
一级指标 |
二级指标 |
指标描述 |
高峰通行指标 |
早高峰平均小时通行车辆数占比(F2) |
早高峰卡口平均小时车流量与全天卡口平均小时车流量之比 |
晚高峰平均小时通行车辆数占比(F3) |
晚高峰卡口平均小时车流量与全天卡口平均小时车流量之比 |
|
高峰平均小时通行车辆数占比(F1) |
高峰卡口平均小时车流量与全天卡口平均小时车流量之比 |
|
平峰通行指标 |
平峰平均小时通行车辆数占比(F4) |
平峰卡口平均小时车流量与全天卡口平均小时车流量之比 |
K-means++聚类算法
本文采用了改进的K均值聚类,K均值聚类(K-means clustering)是一种常见的无监督学习算法,用于将数据点分成具有相似特征的簇。它是数据挖掘和机器学习中最常用的聚类算法之一。K均值聚类旨在最小化每个数据点与其所属簇的中心点(质心)之间的距离,从而实现聚类。
在K-means算法中,聚类中心初始化选择对最终的聚类结果有着很大的影响,而Arthur等
本文采用K-means++聚类算法对数据进行分类其算法步骤可表示为:
2) 计算每一个对象到每一个聚类中心的欧氏距离 :
(1)
式(1)中, 为第j个聚类中心; 为第j个聚类中心的第t个属性;cj为第j类样本的个数; 为第i个数据的值; 为第i个数据的第t个属性。
3) 针对每个类别,重新计算它的聚类中心(即属于该类的所有样本的质心):
(2)
式(2)中, 为第j个聚类中心;cj为第j类样本的个数; 为第i个数据的值。
4) 重复上面2)、3)两步操作,直到达到某个中止条件(迭代次数、最小误差变化等)。
对ETC卡口数据进行筛选及错误数据消除。
通过对筛选后的ETC数据采用手肘法及K-means++聚类方法对其进行聚类分析。聚类结果分析箱型图见
由
1) 通勤型路段空间分布特征
通勤型路段空间分布图见
由
图5. 济南市通勤通道空间分布图:(a) 济南市通勤通道总体分布图;(b) 第一条通勤通道可视化图;(c) 第二条通勤通道可视化图
而对于京台高速分为非通勤道路的原因为济南西二环距离京台高速距离相近,且两线平行分布,而通过调查百度地图济南二环西路车流量情况,在早晚高峰期间二环西路车辆通行较为顺畅,居民大多选择二环西路通行,且京台高速属于我国连接南北重要通道,其各种车辆较为复杂,车流量较多,故将其分为非通勤型通道。
通过观察,其通勤通道大多穿梭于城市主要居住区、工作区及连接城市快速路的枢纽附近,符合通勤通道分布特征。
2) 通勤型路段流量分布特征
通勤型路段不同时段流量分布见
由
图6. 济南市不同时段通勤通道流量分布图:(a) 早高峰济南市通勤通道流量分布图;(b) 晚高峰济南市通勤通道流量分布图;(c) 平峰济南市通勤通道流量分布图
本文利用无监督识别方法识别使用高速公路路段的类型,在此基础上,进一步分析通勤路段车辆的时空分布特征。从通勤出行的角度,挖掘城市通勤快速出行廊道分布,研究高速路网与城市道路网络的关系,得出以下结论:1) 对济南市高速路段进行分类,识别出19段双向通勤型高速路段、2段单向通勤型高速路段。2) 济南市高速通勤路段时间通行特征呈现双驼峰型,在早高峰及晚高峰出行车辆较多,平峰车辆较少,符合通勤型通道车流的特征。3) 高速通勤通道呈现镜像C型分布特征,其通勤通道主要为济南北部G35、东部及南部的G2001,同时还涉及S8105华山枢纽至崔寨西枢纽路段和G2的曹范立交及港沟立交,其通勤通道大多穿梭于城市主要居住区、工作区及连接城市快速路的枢纽附近。4) 通勤通道车流量主要呈现G35高速车流量占比较高特点,其次为G2001东绕城路段车流量均在1000 辆/h以上。
在后续研究中,研究非通勤车辆的时空分布特征,进一步完善各类别车辆在高速公路上的运行状态与时空分布特征的构建与分析,进一步根据其城市收费站点分类及通勤数据得出其通勤特征,对提升高速公路交通系统的效率和缓解其交通问题具有重要的意义。
2022年度山东省人文社会科学课题,项目名称:新型城镇下县域高速交通网与全域旅游高质量融合发展路径研究,项目编号:2022-YYGL-26。