值得注意的是,在动作对时间加工的增益效应上,研究者们认为该效应仅存在于听觉通道,且在视觉通道的相关研究较少(
Iordanescu et al., 2012
;
Zalta et al., 2020
)。然而,研究者们所使用的视觉刺激形式为视觉闪烁(visual flash),近年有研究表明,这种离散刺激对于视觉拍子知觉与同步而言属于劣势刺激,而连续的视觉运动刺激与其相比更具优势(
Gan et al., 2015
;
Gu et al., 2019
;
Zhou et al., 2024
)。因此,未来的研究可聚焦于探索同步动作对于视觉运动刺激的增益效应。
此外,本研究领域仍存在较多局限性,例如现有研究仅探究了有限的运动种类(短暂、离散、弹震式动作)对于严密控制的计时任务的影响,尚未在更具生态效度的场景下系统研究动作在日常生活中的时间加工的作用(
De Kock et al., 2021a
)。未来的研究可进一步丰富相关空缺,帮助我们全面理解动作系统与时间加工系统间的关系及其潜在机制。
基金项目
国家级大学生创新训练项目(项目编号:202310445222)。
NOTES
*共同第一作者。
#通讯作者。
References
Avanzino, L., Pelosin, E., Vicario, C. M., Lagravinese, G., Abbruzzese, G.,&Martino, D. (2016). Time Processing and Motor Control in Movement Disorders. Frontiers in Human Neuroscience, 10, Article 631. >https://doi.org/10.3389/fnhum.2016.00631
Benedetto, A.,&Baud-Bovy, G. (2021). Tapping Force Encodes Metrical Aspects of Rhythm. Frontiers in Human Neuroscience, 15, Article 633956. >https://doi.org/10.3389/fnhum.2021.633956
Chemin, B., Mouraux, A.,&Nozaradan, S. (2014). Body Movement Selectively Shapes the Neural Representation of Musical Rhythms. Psychological Science, 25, 2147-2159. >https://doi.org/10.1177/0956797614551161
Cope, T. E., Grube, M., Singh, B., Burn, D. J.,&Griffiths, T. D. (2014). The Basal Ganglia in Perceptual Timing: Timing Performance in Multiple System Atrophy and Huntington’s Disease. Neuropsychologia, 52, 73-81. >https://doi.org/10.1016/j.neuropsychologia.2013.09.039
De Kock, R., Gladhill, K. A., Ali, M. N., Joiner, W. M.,&Wiener, M. (2021a). How Movements Shape the Perception of Time. Trends in Cognitive Sciences, 25, 950-963. >https://doi.org/10.1016/j.tics.2021.08.002
De Kock, R., Zhou, W., Joiner, W. M.,&Wiener, M. (2021b). Slowing the Body Slows down Time Perception. eLife, 10, e63607. >https://doi.org/10.7554/elife.63607
Falk, S.,&Dalla Bella, S. (2016). It Is Better When Expected: Aligning Speech and Motor Rhythms Enhances Verbal Processing. Language, Cognition and Neuroscience, 31, 699-708. >https://doi.org/10.1080/23273798.2016.1144892
Falk, S., Volpi-Moncorger, C.,&Dalla Bella, S. (2017). Auditory-Motor Rhythms and Speech Processing in French and German Listeners. Frontiers in Psychology, 8, Article 395. >https://doi.org/10.3389/fpsyg.2017.00395
Gan, L., Huang, Y., Zhou, L., Qian, C.,&Wu, X. (2015). Synchronization to a Bouncing Ball with a Realistic Motion Trajectory. Scientific Reports, 5, Article No. 11974. >https://doi.org/10.1038/srep11974
Gavazzi, G., Bisio, A.,&Pozzo, T. (2013). Time Perception of Visual Motion Is Tuned by the Motor Representation of Human Actions. Scientific Reports, 3, Article No. 1168. >https://doi.org/10.1038/srep01168
Grahn, J. A.,&Brett, M. (2007). Rhythm and Beat Perception in Motor Areas of the Brain. Journal of Cognitive Neuroscience, 19, 893-906. >https://doi.org/10.1162/jocn.2007.19.5.893
Grahn, J. A.,&Brett, M. (2009). Impairment of Beat-Based Rhythm Discrimination in Parkinson’s Disease. Cortex, 45, 54-61. >https://doi.org/10.1016/j.cortex.2008.01.005
Gu, L., Huang, Y.,&Wu, X. (2019). Advantage of Audition over Vision in a Perceptual Timing Task but Not in a Sensorimotor Timing Task. Psychological Research, 84, 2046-2056. >https://doi.org/10.1007/s00426-019-01204-3
Haggard, P., Clark, S.,&Kalogeras, J. (2002). Voluntary Action and Conscious Awareness. Nature Neuroscience, 5, 382-385. >https://doi.org/10.1038/nn827
Iordanescu, L., Grabowecky, M.,&Suzuki, S. (2012). Action Enhances Auditory but Not Visual Temporal Sensitivity. Psychonomic Bulletin&Review, 20, 108-114. >https://doi.org/10.3758/s13423-012-0330-y
Iversen, J. R.,&Balasubramaniam, R. (2016). Synchronization and Temporal Processing. Current Opinion in Behavioral Sciences, 8, 175-180. >https://doi.org/10.1016/j.cobeha.2016.02.027
Jones, M. R., Moynihan, H., MacKenzie, N.,&Puente, J. (2002). Temporal Aspects of Stimulus-Driven Attending in Dynamic Arrays. Psychological Science, 13, 313-319. >https://doi.org/10.1111/1467-9280.00458
Knöll, J., Morrone, M. C.,&Bremmer, F. (2013). Spatio-Temporal Topography of Saccadic Overestimation of Time. Vision Research, 83, 56-65. >https://doi.org/10.1016/j.visres.2013.02.013
Large, E. W.,&Jones, M. R. (1999). The Dynamics of Attending: How People Track Time-Varying Events. Psychological Review, 106, 119-159. >https://doi.org/10.1037/0033-295x.106.1.119
Legaspi, R.,&Toyoizumi, T. (2019). A Bayesian Psychophysics Model of Sense of Agency. Nature Communications, 10, Article No. 4250. >https://doi.org/10.1038/s41467-019-12170-0
Li, X., Baurès, R.,&Cremoux, S. (2023). Hand Movements Influence the Perception of Time in a Prediction Motion Task. Attention, Perception,&Psychophysics, 85, 1276-1286. >https://doi.org/10.3758/s13414-023-02690-9
Manning, F. C.,&Schutz, M. (2015a). Movement Enhances Perceived Timing in the Absence of Auditory Feedback. Timing&Time Perception, 3, 3-12. >https://doi.org/10.1163/22134468-03002037
Manning, F. C.,&Schutz, M. (2015b). Trained to Keep a Beat: Movement-Related Enhancements to Timing Perception in Percussionists and Non-Percussionists. Psychological Research, 80, 532-542. >https://doi.org/10.1007/s00426-015-0678-5
Manning, F. C., Harris, J.,&Schutz, M. (2016). Temporal Prediction Abilities Are Mediated by Motor Effector and Rhythmic Expertise. Experimental Brain Research, 235, 861-871. >https://doi.org/10.1007/s00221-016-4845-8
Manning, F. C., Siminoski, A.,&Schutz, M. (2020). Exploring the Effects of Effectors. Music Perception, 37, 196-207. >https://doi.org/10.1525/mp.2020.37.3.196
Manning, F.,&Schutz, M. (2013). “Moving to the Beat” Improves Timing Perception. Psychonomic Bulletin&Review, 20, 1133-1139. >https://doi.org/10.3758/s13423-013-0439-7
Mauk, M. D.,&Buonomano, D. V. (2004). The Neural Basis of Temporal Processing. Annual Review of Neuroscience, 27, 307-340. >https://doi.org/10.1146/annurev.neuro.27.070203.144247
Merchant, H.,&Yarrow, K. (2016). How the Motor System Both Encodes and Influences Our Sense of Time. Current Opinion in Behavioral Sciences, 8, 22-27. >https://doi.org/10.1016/j.cobeha.2016.01.006
Monier, F., Droit‐Volet, S.,&Coull, J. T. (2019). The Beneficial Effect of Synchronized Action on Motor and Perceptual Timing in Children. Developmental Science, 22, e12821. >https://doi.org/10.1111/desc.12821
Morillon, B.,&Baillet, S. (2017). Motor Origin of Temporal Predictions in Auditory Attention. Proceedings of the National Academy of Sciences of the United States of America, 114, E8913-E8921. >https://doi.org/10.1073/pnas.1705373114
Morillon, B., Schroeder, C. E.,&Wyart, V. (2014). Motor Contributions to the Temporal Precision of Auditory Attention. Nature Communications, 5, Article No. 5255. >https://doi.org/10.1038/ncomms6255
Nani, A., Manuello, J., Liloia, D., Duca, S., Costa, T.,&Cauda, F. (2019). The Neural Correlates of Time: A Meta-Analysis of Neuroimaging Studies. Journal of Cognitive Neuroscience, 31, 1796-1826. >https://doi.org/10.1162/jocn_a_01459
Novembre, G.,&Keller, P. E. (2014). A Conceptual Review on Action-Perception Coupling in the Musicians’ Brain: What Is It Good For? Frontiers in Human Neuroscience, 8, Article 603. >https://doi.org/10.3389/fnhum.2014.00603
Phillips-Silver, J.,&Trainor, L. J. (2005). Feeling the Beat: Movement Influences Infant Rhythm Perception. Science, 308, 1430-1430. >https://doi.org/10.1126/science.1110922
Phillips-Silver, J.,&Trainor, L. J. (2007). Hearing What the Body Feels: Auditory Encoding of Rhythmic Movement. Cognition, 105, 533-546. >https://doi.org/10.1016/j.cognition.2006.11.006
Press, C., Berlot, E., Bird, G., Ivry, R.,&Cook, R. (2014). Moving Time: The Influence of Action on Duration Perception.. Journal of Experimental Psychology: General, 143, 1787-1793. >https://doi.org/10.1037/a0037650
Prinz, W. (1997). Perception and Action Planning. European Journal of Cognitive Psychology, 9, 129-154. >https://doi.org/10.1080/713752551
Protopapa, F., Hayashi, M. J., Kulashekhar, S., van der Zwaag, W., Battistella, G., Murray, M. M. et al. (2019). Chronotopic Maps in Human Supplementary Motor Area. PLOS Biology, 17, e3000026. >https://doi.org/10.1371/journal.pbio.3000026
Singh, A., Cole, R. C., Espinoza, A. I., Evans, A., Cao, S., Cavanagh, J. F. et al. (2021). Timing Variability and Midfrontal ~4 Hz Rhythms Correlate with Cognition in Parkinson’s Disease. NPJ Parkinson’s Disease, 7, Article No. 14. >https://doi.org/10.1038/s41531-021-00158-x
Su, Y.,&Pöppel, E. (2011). Body Movement Enhances the Extraction of Temporal Structures in Auditory Sequences. Psychological Research, 76, 373-382. >https://doi.org/10.1007/s00426-011-0346-3
Sugano, Y., Keetels, M.,&Vroomen, J. (2014). Concurrent Sensorimotor Temporal Recalibration to Different Lags for the Left and Right Hand. Frontiers in Psychology, 5, Article 140. >https://doi.org/10.3389/fpsyg.2014.00140
Suzuki, K., Lush, P., Seth, A. K.,&Roseboom, W. (2019). Intentional Binding without Intentional Action. Psychological Science, 30, 842-853. >https://doi.org/10.1177/0956797619842191
Terao, M., Watanabe, J., Yagi, A.,&Nishida, S. (2008). Reduction of Stimulus Visibility Compresses Apparent Time Intervals. Nature Neuroscience, 11, 541-542. >https://doi.org/10.1038/nn.2111
Tomassini, A.,&Morrone, M. C. (2016). Perceived Visual Time Depends on Motor Preparation and Direction of Hand Movements. Scientific Reports, 6, Article No. 27947. >https://doi.org/10.1038/srep27947
Tomassini, A., Gori, M., Baud-Bovy, G., Sandini, G.,&Morrone, M. C. (2014). Motor Commands Induce Time Compression for Tactile Stimuli. Journal of Neuroscience, 34, 9164-9172. >https://doi.org/10.1523/jneurosci.2782-13.2014
Wenke, D.,&Haggard, P. (2009). How Voluntary Actions Modulate Time Perception. Experimental Brain Research, 196, 311-318. >https://doi.org/10.1007/s00221-009-1848-8
Wiener, M., Zhou, W., Bader, F.,&Joiner, W. M. (2019). Movement Improves the Quality of Temporal Perception and Decision-Making. eNeuro, 6, ENEURO.0042-19.2019. >https://doi.org/10.1523/eneuro.0042-19.2019
Yabe, Y.,&Goodale, M. A. (2015). Time Flies When We Intend to Act: Temporal Distortion in a Go/No-Go Task. The Journal of Neuroscience, 35, 5023-5029. >https://doi.org/10.1523/jneurosci.4386-14.2015
Yamamoto, K. (2020). Cue Integration as a Common Mechanism for Action and Outcome Bindings. Cognition, 205, Article ID: 104423. >https://doi.org/10.1016/j.cognition.2020.104423
Yang, S. C., Wolpert, D. M.,&Lengyel, M. (2016). Theoretical Perspectives on Active Sensing. Current Opinion in Behavioral Sciences, 11, 100-108. >https://doi.org/10.1016/j.cobeha.2016.06.009
Yarrow, K., Haggard, P., Heal, R., Brown, P.,&Rothwell, J. C. (2001). Illusory Perceptions of Space and Time Preserve Cross-Saccadic Perceptual Continuity. Nature, 414, 302-305. >https://doi.org/10.1038/35104551
Yokosaka, T., Kuroki, S., Nishida, S.,&Watanabe, J. (2015). Apparent Time Interval of Visual Stimuli Is Compressed during Fast Hand Movement. PLOS ONE, 10, e0124901. >https://doi.org/10.1371/journal.pone.0124901
Yon, D., Edey, R., Ivry, R. B.,&Press, C. (2017). Time on Your Hands: Perceived Duration of Sensory Events Is Biased toward Concurrent Actions. Journal of Experimental Psychology: General, 146, 182-193. >https://doi.org/10.1037/xge0000254
Zalta, A., Petkoski, S.,&Morillon, B. (2020). Natural Rhythms of Periodic Temporal Attention. Nature Communications, 11, Article No. 1051. >https://doi.org/10.1038/s41467-020-14888-8
Zhou, L., Xing, L., Zheng, C.,&Li, S. (2024). Moving Stimuli Enhance Beat Timing and Sensorimotor Coupling in Vision. Journal of Experimental Psychology: Human Perception and Performance, 50, 416-429. >https://doi.org/10.1037/xhp0001193