Figure 8. Comparison of constraint-related fracture toughness determined by the prediction program and determined in the literature--图8. 预测程序所确定与文献中所确定拘束相关断裂韧性的对比--5. 结论
References
国家市场监督管理总局. GB/T 19624-2019在用含缺陷压力容器安全评定[S]. 北京: 中国标准出版社, 2019.
British Energy Ltd. (2006) R6: Assessment of the Integrity of Structures Containing Defects, British Energy Generation Report R/H/R6, Revision 4. 25-32.
British Standards Institution (1999) BS 7910: 1999, Guide to Methods of Assessing the Acceptability of Flaws in Fusion Welded Structures. 113-124.
SINTAP (1999) Structural Assessment Procedures for European Industry, Final Procedure, Project BE95-1426. British Steel Report, 81-114.
Kocak, M., Webster, S., Janosch, J.J., Ainsworth, R.A. and Koers, R. (2008) FITNET Fitness-for-Service (FFS) Procedure (Vol. 1). GKSS Research Centre.
Kocak, M., Hadley, I., Szavai, S., Tkach, Y. and Taylor, N. (2008) FITNET Fitness-for-Service (FFS) Annex (Vol. 3). GKSS Research Centre.
Kocak, M., Laukkanen, A., Gutiérrez-Solana, F., Cicero, S. and Hadley, I. (2008) FITNET Fitness-for-Service (FFS) Case Studies and Tutorials (Vol. 2). GKSS Research Centre.
Gutiérrez-Solana, F. and Cicero, S. (2009) FITNET FFS Procedure: A Unified European Procedure for Structural Integrity Assessment. Engineering Failure Analysis, 16, 559-577. >https://doi.org/10.1016/j.engfailanal.2008.02.007
American Society of Mechanical Engineers (2002) ASME BPVC Section XI: Rules for Inservice Inspection of Nuclear Power Plant Components. American Society of Mechanical Engineers, 77-80.
Minami, F., Ohata, M., Shimanuki, H., et al. (2006) Method of Constraint Loss Correction of CTOD Fracture Toughness for Fracture Assessment of Steel Components. Engineering Fracture Mechanics, 73, 1996-2020. >https://doi.org/10.1016/j.engfracmech.2006.03.013
Dodds, R.H., Shih, C.F. and Anderson, T.L. (1993) Continuum and Micromechanics Treatment of Constraint in Fracture. International Journal of Fracture, 64, 101-133. >https://doi.org/10.1007/BF00016693
Williams, M.L. (1957) On the Stress Distribution at the Base of a Stationary Crack. Journal of Applied Mechanics, 24, 109-114. >https://doi.org/10.1115/1.4011454
Hancock J.W., Reuter, W.G. and Parks, D.M. (1993) Constraint and Toughness Parameterized by T. In: Constraint Effects in Fracture, ASTM STP 1171, American Society for Testing and Materials, 1-40. >https://doi.org/10.1520/STP18021S
Sumpter, J.D.G. (1993) An Experimental Investigation of the T-Stress Approach. In: Constraint Effect in Fracture, ASTM STP 1171, American Society for Testing and Materials, 492-502. >https://doi.org/10.1520/STP18042S
Tregoning, R.L. and Joyce, J.A. (2002) Application of T-Stress Based Constraint Correction to A533B Steel Fracture Toughness Data. In: Fatigue and Fracture Mechanics, ASTM STP 1417, Vol. 33, American Society for Testing and Materials, 307-327. >https://doi.org/10.1520/STP11082S
O’Dowd, N.P. and Shih, C.F. (1991) Family of Crack-Tip Fields Characterized by Triaxiality Parameter. Journal of the Mechanics and Physics of Solids, 39, 989-1015. >https://doi.org/10.1016/0022-5096(91)90049-T
Guo, W.L. (1993) Elasto-Plastic Three-Dimensional Crack Border Field-I. Singular Structure of the Field. Engineering Fracture Mechanics, 46, 93-104. >https://doi.org/10.1016/0013-7944(93)90306-D
Guo, W.L. (1993) Elasto-Plastic Three-Dimensional Crack Border Field-II. Asymptotic Solution for the Field. Engineering Fracture Mechanics, 46, 105-113. >https://doi.org/10.1016/0013-7944(93)90307-E
Guo, W.L. (1995) Elasto-Plastic Three-Dimensional Crack Border Field-III. Fracture Parameters. Engineering Fracture Mechanics, 51, 51-71. >https://doi.org/10.1016/0013-7944(94)00215-4
Guo, W.L. (1999) Three-Dimensional Analysis of Plastic Constraint for Through-Thickness Cracked Bodies. Engineering Fracture Mechanics, 62, 383-407. >https://doi.org/10.1016/S0013-7944(98)00102-7
Betegón, C. and Peñuelas, I. (2006) A Constraint Based Parameter for Quantifying the Crack Tip Stress Fields in Welded Joints. Engineering Fracture Mechanics, 73, 1865-1877. >https://doi.org/10.1016/j.engfracmech.2006.02.012
Mostafavi, M., Smith, D.J. and Pavier, M.J. (2010) Reduction of Measured Toughness Due to Out-of-Plane Constraint in Ductile Fracture of Aluminium Alloy Specimens. Fatigue&Fracture of Engineering Materials&Structures, 33, 724-739. >https://doi.org/10.1111/j.1460-2695.2010.01483.x
Yang, J., Wang, G.Z., Xuan, F.Z., et al. (2013) Unified Characterisation of In-Plane and Out-of-Plane Constraint Based on Crack-Tip Equivalent Plastic Strain. Fatigue&Fracture of Engineering Materials&Structures, 36, 504-514. >https://doi.org/10.1111/ffe.12019
Yang, J., Wang, G.Z., Xuan, F.Z., et al. (2014) Unified Correlation of In-Plane and Out-of-Plane Constraints with Fracture Toughness. Fatigue&Fracture of Engineering Materials&Structures, 37, 132-145. >https://doi.org/10.1111/ffe.12094
Xu, J.Y., Wang, G.Z., Xuan, F.Z., et al. (2018) Unified Constraint Parameter Based on Crack-Tip Opening Displacement. Engineering Fracture Mechanics, 200, 175-188. >https://doi.org/10.1016/j.engfracmech.2018.07.021
杨杰, 王雷. 实际结构拘束相关断裂韧性的确定方法研究[J]. 机械强度, 2017, 39(6): 1438-1444.
吴楠. 计算机辅助技术在机械设计与制造中的应用[J]. 机械设计, 2021, 38(11): 146.
杨杰, 刘玉嫚, 吴凡. 不同实验室试样间拘束度的匹配性研究[J]. 机械强度, 2019, 41(6): 1308-1314.