(a) 试件几何尺寸--(b) 试件断面尺寸 (c) 有限元模型--Figure 1. Size of specimen and finite element model (unit: mm)--图1. 试件尺寸及有限元模型(单位:mm)--图1. 试件尺寸及有限元模型(单位:mm)(a) 试件几何尺寸--(b) 试件断面尺寸 (c) 有限元模型--Figure 1. Size of specimen and finite element model (unit: mm)--图1. 试件尺寸及有限元模型(单位:mm)--图1. 试件尺寸及有限元模型(单位:mm)
图1. 试件尺寸及有限元模型(单位:mm)
Figure 2. Stress-strain relationship of concrete--图2. 混凝土的应力–应变关系--
Table 3. Comparison of ultimate load and displacement of specimens with different shapes and positions of openingsTable 3. Comparison of ultimate load and displacement of specimens with different shapes and positions of openings 表3. 不同洞口形状、位置各试件的极限荷载与极限位移对比
试件编号
极限荷载Pu/kN
Pu/PA0
极限位移f/mm
f/fA0
A1
409.00
1.000
5.27
1.00
A2
203.00
0.496
5.50
1.04
A3
227.00
0.555
8.49
1.61
A4
233.00
0.570
10.35
1.96
A5
251.00
0.614
7.90
1.50
A6
260.00
0.636
10.99
2.08
注:PA0、fA0分别为试件A1的极限荷载和极限位移。
图6. 各试件的荷载–挠度曲线
(a) A2--(b) A3 (c) A4--(d) A5 (e) A6--Figure 7. Plastic deformation of each specimen--图7. 各试件的塑性形变--图7. 各试件的塑性形变(a) A2--(b) A3 (c) A4--(d) A5 (e) A6--Figure 7. Plastic deformation of each specimen--图7. 各试件的塑性形变--图7. 各试件的塑性形变(a) A2--(b) A3 (c) A4--(d) A5 (e) A6--Figure 7. Plastic deformation of each specimen--图7. 各试件的塑性形变--图7. 各试件的塑性形变
References
Ferreira, F.P.V., Martins, C.H. and De Nardin, S. (2020) Advances in Composite Beams with Web Openings and Composite Cellular Beams. Journal of Constructional Steel Research, 172, Article ID: 106182. >https://doi.org/10.1016/j.jcsr.2020.106182
白永生, 蒋永生, 梁书亭, 等. 腹板开洞的钢与混凝土组合梁承载力计算方法综述和探讨[J]. 工业建筑, 2004, 34(6): 68-70, 83.
张 伟, 胡夏闽. 腹板开洞钢-混凝土组合梁的抗弯和抗剪设计[J]. 建筑钢结构进展, 2009, 11(5): 25-30.
Chen, T., Gu, X. and Li, H. (2011) Behavior of Steel-Concrete Composite Cantilever Beams with Web Openings under Negative Moment. International Journal of Steel Structures, 11, 39-49. >https://doi.org/10.1007/s13296-011-1004-8
寇立亚, 胡夏闽, 张允领. 腹板开洞钢-混凝土组合梁极限承载力的影响因素分析[J]. 钢结构, 2012, 27(12): 15-20, 6.
寇立亚, 胡夏闽. 考虑混凝土板作用的腹板开洞钢-混凝土组合梁承载力有限元分析[J]. 四川建筑科学研究, 2012, 38(6): 65-69.
王鹏, 周东华, 王永慧, 等. 腹板开洞钢-混凝土组合梁非线性有限元分析[J]. 沈阳建筑大学学报(自然科学版), 2011, 27(5): 809-817.
王鹏, 周东华, 王永慧, 等. 带加劲肋腹板开洞组合梁极限承载力理论研究[J]. 工程力学, 2013, 30(5): 138-146, 152.
王鹏, 周东华, 王永慧, 等. 腹板开洞钢-混凝土组合梁抗剪承载力试验研究[J]. 工程力学, 2013, 30(3): 297-305.
Ellobody, E. and Young, B. (2015) Behaviour and Design of Composite Beams with Stiffened and Unstiffened Web Openings. Advances in Structural Engineering, 18, 893-918. >https://doi.org/10.1260/1369-4332.18.6.893
童根树, 陈迪. 腹板开孔的钢-混凝土组合梁的挠度计算[J]. 工程力学, 2015, 32(12): 168-178.
Classen, M., Kurz, W., Schäfer, M. and Hegger, J. (2019) A Mechanical Design Model for Steel and Concrete Composite Members with Web Openings. Engineering Structures, 197, Article ID: 109417. >https://doi.org/10.1016/j.engstruct.2019.109417
贾连光, 李鹏宇, 焦禹铭. 六边形孔蜂窝组合梁的等效抗剪刚度研究[J]. 沈阳建筑大学学报(自然科学版), 2020, 36(1): 11-18.
Du, H., Hu, X., Shi, D. and Fang, B. (2021) Effect of Reinforcement on the Strength of the Web Opening in Steel-Concrete Composite Beam. Engineering Structures, 235, Article ID: 112038. >https://doi.org/10.1016/j.engstruct.2021.112038
Li, L.Q., Liao, W.Y. and Huo, B.Y. (2021) Finite Element Modeling and Nonlinear Analysis on the Optimum Opening Location for Continuous Composite Beams with Web Openings. Tehnicki Vjesnik-Technical Gazette, 28, 891-897.
Ollgaard, J.G., Slutter, R.G. and Fisher, J.W. (1971) Shear Strength of Stud Connectors in Lightweight and Normal-Weight Concrete. Engineering Journal, 8, 55-64. >https://doi.org/10.62913/engj.v8i2.160