Numerical Limit Analysis of Stability for a Soil Slope in Shenzhen
The numerical limit analysis is one of the main methods for slope stability evaluation, and it has certain advantages especially for problems with complex inhomogeneous soil slopes. The safety factor and failure mechanism of a typical inhomogeneous slope in Shenzhen is analyzed by using OptumG2 software, and a numerical limit analysis based on a mixed stress six-node triangle element is adopted in the software, and the slope stability problem is recast as a second order cone programming. By using the adaptive analysis based on plastic shear dissipation, not only can an accurate safety factor of slope be obtained, but the failure mechanism of the slope can also be determined. On this basis, through numerical parameter analysis, the feasibility of the software in analyzing actual complex slopes is first verified. Secondly, by comparing the advantages and disadvantages of two different slope reduction schemes, it is found that the excavation volume of the secondary slope reduction scheme is relatively small under the same safety factor, but the secondary slope reduction changes the stress state of the slope, resulting in the instability mode of the slope after the slope reduction may appear in a local instability mode, or it may be a composite instability mode of two logarithmic spirals, which may increase the difficulty of slope control. It can be seen that the method in this paper can not only provide an effective way to solve the stability evaluation of actual complex slope engineering, but also provide a method for landslide control.
Inhomogeneous Soil Slope
塑性极限分析上限和下限方法是边坡稳定分析的常用方法之一,Chen
基于有限元的数值极限分析方法
由此可见,基于自适应混合应力有限元极限分析方法可用于分析实际工程中复杂边坡的稳定性。并考虑到数值极限分析方法已经被纳入《建筑边坡工程技术规范》(GB50330-2013)
此外,根据《建筑边坡工程技术规范》(GB50330-2013),当工程场地有放坡条时,且无不良地质作用时宜优先采用坡率法
地层 |
黏聚力c/kPa |
内摩擦角φ/(˚) |
重度γ/kN·m−3 |
含砾黏土 |
20.0 |
16 |
18.5 |
砾质黏性土 |
24.0 |
20 |
19.8 |
全风化花岗岩 |
25.0 |
28 |
21.5 |
选取
OptumG2
在OptumG2软件中,采用了
式中: 为应变梯度矩阵, 为速度插值形函数, 为应力插值形函数。在式(1)的基础上可以得求极限荷载系数的数学优化问题,即:
式中:
(3)
根据凸规划的对偶理论
根据多年的工程实践,以强度指标的储备作为安全系数定义的方法被工程界广泛认可,即:
(4)
在计算安全系数时,一般并非直接求解式(2),而是以重力最为可变荷载,计算给定抗剪强度指标c和 时的极限荷载乘子 ,若 则增加折减系数的数值,若 则减小折减系数的数值,直到 时,即为所求的安全系数Fs。
首先在OptumG2中选择基本MC材料模型,按
通常对不稳定边坡治理最简单、最直接的方案就是放坡,即文
图6. 安全系数为1时两种切坡方案的失稳模式
然而二级放坡中边坡的失稳模式相对复杂,如
作者感谢OptumCE提供OptumG2程序(学术版)的免费访问权限以进行此项研究。