Table 3. Experimental results of LEVIR-Ship and OSSDTable 3. Experimental results of LEVIR-Ship and OSSD 表3. LEVIR-Ship和OSSD的实验结果
LEVIR-Ship
OSSD
FPS
P
R
AP
P
R
AP
Faster RCNN
35.72
83.99
71.71
43.96
93.61
86.65
23
SSD
94.88
47.70
64.77
95.12
54.89
75.23
35
EfficientDet
68.80
53.52
44.67
98.01
79.56
79.39
23
YOLOv5s
80.32
70.83
66.23
93.65
87.78
87.36
103
YOLOX
94.34
75.73
74.73
96.28
91.87
91.52
40
YOLOv7
89.82
47.98
46.17
94.82
90.83
90.41
80
DRENet
82.20
74.90
69.37
94.96
93.38
93.32
84
Proposed Model
91.46
78.49
76.86
95.85
93.73
95.13
82
Figure 8. Experimental results on (a) LEVIR-Ship and (b) OSSD--图8. (a) LEVIR-Ship和(b) OSSD的实验结果--Figure 9. Detection results of YOLOv5s and the proposed model--图9. YOLOv5s和提出模型的检测结果--
References
Proia, N. and Page, V. (2010) Characterization of a Bayesian Ship Detection Method in Optical Satellite Images. IEEE Geoscience and Remote Sensing Letters, 7, 226-230. >https://doi.org/10.1109/lgrs.2009.2031826
Liu, Y., Zhao, J. and Qin, Y. (2021) A Novel Technique for Ship Wake Detection from Optical Images. Remote Sensing of Environment, 258, Article ID: 112375. >https://doi.org/10.1016/j.rse.2021.112375
Chen, J., Chen, K., Chen, H., Li, W., Zou, Z. and Shi, Z. (2022) Contrastive Learning for Fine-Grained Ship Classification in Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-16. >https://doi.org/10.1109/tgrs.2022.3192256
Han, W., Kuerban, A., Yang, Y., Huang, Z., Liu, B. and Gao, J. (2022) Multi-vision Network for Accurate and Real-Time Small Object Detection in Optical Remote Sensing Images. IEEE Geoscience and Remote Sensing Letters, 19, 1-5. >https://doi.org/10.1109/lgrs.2020.3044422
Zhang, Z., Guo, W., Zhu, S. and Yu, W. (2018) Toward Arbitrary-Oriented Ship Detection with Rotated Region Proposal and Discrimination Networks. IEEE Geoscience and Remote Sensing Letters, 15, 1745-1749. >https://doi.org/10.1109/lgrs.2018.2856921
Xu, Q., Li, B., He, Z. and Ma, C. (2011) Multiscale Contour Extraction Using a Level Set Method in Optical Satellite Images. IEEE Geoscience and Remote Sensing Letters, 8, 854-858. >https://doi.org/10.1109/lgrs.2011.2128855
Yang, G., Li, B., Ji, S.F., Gao, F. and Xu, Q.Z. (2014) Ship Detection from Optical Satellite Images Based on Sea Surface Analysis. IEEE Geoscience and Remote Sensing Letters, 11, 641-645. >https://doi.org/10.1109/lgrs.2013.2273552
Li, Y., Zhang, S. and Wang, W. (2022) A Lightweight Faster R-CNN for Ship Detection in SAR Images. IEEE Geoscience and Remote Sensing Letters, 19, 1-5. >https://doi.org/10.1109/lgrs.2020.3038901
Shorten, C. and Khoshgoftaar, T.M. (2019) A Survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6, Article No. 60. >https://doi.org/10.1186/s40537-019-0197-0
Chen, J., Chen, K., Chen, H., Zou, Z. and Shi, Z. (2022) A Degraded Reconstruction Enhancement-Based Method for Tiny Ship Detection in Remote Sensing Images with a New Large-Scale Dataset. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-14. >https://doi.org/10.1109/tgrs.2022.3180894
Lin, T., Dollar, P., Girshick, R., He, K., Hariharan, B. and Belongie, S. (2017) Feature Pyramid Networks for Object Detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 936-944. >https://doi.org/10.1109/cvpr.2017.106
Liu, S., Qi, L., Qin, H., Shi, J. and Jia, J. (2018) Path Aggregation Network for Instance Segmentation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 8759-8768. >https://doi.org/10.1109/cvpr.2018.00913
Tan, M., Pang, R. and Le, Q.V. (2020) Efficientdet: Scalable and Efficient Object Detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 13-19 June 2020, 10778-10787. >https://doi.org/10.1109/cvpr42600.2020.01079
He, K.M., Zhang, X.Y., Ren, S.Q., et al. (2015) Spatial Pyramid Pooling in Deep Convolutional Net-Works for Visual Recognition. IEEE Transactions on Pattern Analysis&Machine Intelligence, 37, 1904-1916.
Hou, Q., Zhou, D. and Feng, J. (2021) Coordinate Attention for Efficient Mobile Network Design. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 20-25 June 2021, 13708-13717. >https://doi.org/10.1109/cvpr46437.2021.01350
Zhang, Y., Ren, W., Zhang, Z., Jia, Z., Wang, L. and Tan, T. (2022) Focal and Efficient IOU Loss for Accurate Bounding Box Regression. Neurocomputing, 506, 146-157. >https://doi.org/10.1016/j.neucom.2022.07.042
Arthur, D. and Vassilvitskii, S. (2007) K-Means++: The Advantages of Careful Seeding. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, 7-9 January 2007. >https://dl.acm.org/doi/10.5555/1283383.1283494 .
Shi, Q., Liu, M., Marinoni, A. and Liu, X. (2023) Ugs-1m: Fine-Grained Urban Green Space Mapping of 31 Major Cities in China Based on the Deep Learning Framework. Earth System Science Data, 15, 555-577. >https://doi.org/10.5194/essd-15-555-2023
He, D., Shi, Q., Liu, X., Zhong, Y., Xia, G. and Zhang, L. (2022) Generating Annual High Resolution Land Cover Products for 28 Metropolises in China Based on a Deep Super-Resolution Mapping Network Using Landsat Imagery. GIScience&Remote Sensing, 59, 2036-2067. >https://doi.org/10.1080/15481603.2022.2142727