Study of the Effect of Chloride Salts on Carbonation Characteristics of Recycled Aggregate Concrete
In recent years, recycled concrete, as an environmentally friendly and resource-saving construction material, has received more and more attention and application. However, the carbonation phenomenon of recycled concrete has been one of the key problems restricting its application. At present, the research on carbonation of recycled concrete mainly focuses on carbonation rate and carbonation depth. Chloride ion is a common harmful ion in concrete, which also affects the carbonation of concrete. Especially in environments such as coastal areas and salt lake areas, the concentration of chloride ions is high, which can have a greater impact on the stability of concrete structures. Recycled concrete structures are subjected to internal and external chloride ion attack, along with the effects of carbonation, and these factors together greatly reduce the durability of recycled concrete. In this experiment, the effect of different concentrations of chloride salts on the rapid carbonation test was tested by incorporating chloride salts within concrete with different recycled coarse aggregate substitution rates, and the depth of carbonation was recorded at 7, 14 and 28 days. It was found that the carbonation depth increased with the increase of carbonation time; the increase of recycled coarse aggregate substitution rate led to the increase of carbonation depth; the chloride salt inside the recycled concrete significantly slowed down its carbonation rate and carbonation depth; the increase of chloride concentration will also have different degrees of influence on the carbonization depth of recycled concrete.
Recycled Concrete
建筑行业一直是全球自然资源消耗的主要领域之一,同时城市更新过程中大量建筑垃圾产生。随着城市化进程的加速和建筑业规模的扩大,建筑垃圾的有效处理和再利用问题变得日益突出
在海洋大气环境中,氯离子可通过渗透和扩散进入混凝土内部,同时进行碳化反应。海水中的高含量NaCl和MgCl对海工混凝土的主要威胁是Cl−对内部钢筋的腐蚀。Cl−与混凝土中的水化产物结合,生成膨胀性的Friedel盐,损害混凝土。由于混凝土内外存在浓度梯度,Cl−沿毛细孔隙和裂缝扩散,最终到达钢筋表面。一旦Cl−浓度达到一定程度,会破坏钢筋表面的钝化膜,导致钢筋锈蚀和体积膨胀,导致混凝土结构开裂,严重影响使用寿命。混凝土中水泥水化产物与空气中的CO2接触后,发生化学反应生成水和碳酸盐,降低混凝土的碱度,这称为混凝土的碳化或中性化。混凝土结构长期暴露在空气中,受CO2侵蚀,碳化不可避免,降低混凝土碱度,导致裂缝,显著降低耐久性。郑永来
关于氯盐和碳化对混凝土耐久性的影响已有大量研究,但针对再生混凝土在这方面的表现仍需进一步探讨
本文从再生粗骨料和氯离子来源两个方面考虑制作再生混凝土试件,开展碳化试验,研究再生混凝土碳化深度发展规律及各因素的影响,进一步丰富再生混凝土结构耐久性理论,有利于建筑材料节能减排和新型建筑材料的耐久性设计。
本试验采用P·O42.5普通硅酸盐水泥,标准稠度用水量28.13%,细度(45 μm方孔筛余量) 6.0%,28 d的抗折和抗压强度分别为6.3 MPa、54.1 MPa。
本试验细集料取自湘潭市湘江,其表观密度2581 kg/m3,堆积密度1640 kg/m3,细度模数2.7,吸水率1.02%。天然粗骨料(NA)为湘乡碎石,再生粗骨料是通过对实验室废弃混凝土进行破碎、筛分、清洗制得,粗骨料物理指标满足(GB/T25177-2010)《混凝土用再生粗骨料》标准。
NaCl采用纯度大于96%的工业盐。
本试验中以NaCl溶液浓度(引入内掺氯离子)、再生骨料替代率为考察因素,所用混凝土材料组成依据《普通混凝土配合比设计规程》(JGJ55-2011)和《普通混凝土长期性能和耐久性能试验方法标准》(GB/T50082-2009)配合比设计方法确定。各组混凝土的配合比如
编号 |
材料用量/(kg/m3) |
||||||
水泥 |
细骨料 |
粗骨料 |
再生粗骨料 |
水 |
附加水 |
NaCl |
|
NAC1-0, NAC1-1, NAC1-2, NAC1-3, NAC1-4 |
394 |
578 |
1292 |
0 |
171 |
0.0 |
0, 1.97, 3.94, 7.88, 11.82 |
RAC1-0, RAC1-1, RAC1-2, RAC1-3, RAC1-4 |
394 |
578 |
969 |
323 |
171 |
5.4 |
0, 1.97, 3.94, 7.88, 11.82 |
RAC2-0, RAC2-1, RAC2-2, RAC2-3, RAC2-4 |
394 |
578 |
646 |
646 |
171 |
10.7 |
0, 1.97, 3.94, 7.88, 11.82 |
RAC3-0, RAC3-1, RAC3-2, RAC3-3, RAC3-4 |
394 |
578 |
323 |
969 |
171 |
16.1 |
0, 1.97, 3.94, 7.88, 11.82 |
RAC4-0, RAC4-1, RAC4-2, RAC4-3, RAC4-4 |
394 |
578 |
0 |
1292 |
171 |
21.4 |
0, 1.97, 3.94, 7.88, 11.82 |
如
如
图1. 不同浓度的内源氯离子对碳化深度的影响
图2. 内源氯离子对碳化深度的影响
如
图3为外部氯盐侵蚀对碳化深度的影响。为了加速外部氯盐侵入的速率,
如
如
图3. 外部氯盐侵蚀对碳化深度的影响
根据不同氯离子浓度对碳化深度的影响规律,所得结论如下:
1) 再生混凝土内源氯离子含量越高,对碳化的影响就越大,其抗碳化性能就越强。
2) 再生粗骨料浸泡氯盐或再生混凝土内掺氯盐,都会减小混凝土的碳化深度。
3) 外部氯离子侵蚀可以降低混凝土碳化的前期碳化深度,而干湿循环对混凝土碳化的影响更显著。
湖南省教育厅科研项目(18C0324; 19A164; 22B0473)、国家级大学生创新创业训练(SIT)项目(S202312649002)。
*通讯作者。