References
王田苗, 陶永. 我国工业机器人技术现状与产业化发展战略[J]. 机械工程学报, 2014, 50(9): 1-13.
谭民, 王硕. 机器人技术研究进展[J]. 自动化学报, 2013, 39(7): 963-972.
朱磊磊, 陈军. 轮式移动机器人研究综述[J]. 机床与液压, 2009, 37(8): 242-247.
李磊, 叶涛, 谭民, 等. 移动机器人技术研究现状与未来[J]. 机器人, 2002(5): 475-480.
蔡鹤皋. 对我国机器人产业发展的思考[J]. 集成技术, 2015, 4(5): 1-4.
Wang, S., Cui, L.L., et al. (2021) Balance Control of a Novel Wheel-Legged Robot: Design and Experiments. 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, 30 May-5 June 2021, 6782-6788. >https://doi.org/10.1109/ICRA48506.2021.9561579
Kim, S. and Kwon, S. (2017) Nonlinear Optimal Control Design for Underactuated Two-Wheeled Inverted Pendulum Mobile Platform. IEEE/ASME Transactions on Mechatronics, 22, 2803-2808. >https://doi.org/10.1109/TMECH.2017.2767085
Wang, Y., Miao, Z., Zhong, H. and Pan, Q. (2015) Simultaneous Stabilization and Tracking of Nonholonomic Mobile Robots: A Lyapunov-Based Approach. IEEE Transactions on Control Systems Technology, 23, 1440-1450. >https://doi.org/10.1109/TCST.2014.2375812
Wang, H., Tian, Y. and Xu, H. (2022) Neural Adaptive Command Filtered Control for Cooperative Path Following of Multiple Underactuated Autonomous Underwater Vehicles along One Path. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52, 2966-2978. >https://doi.org/10.1109/TSMC.2021.3062077
Shou, Y., Xu, B., Zhang, A. and Mei, T. (2021) Virtual Guidance-Based Coordinated Tracking Control of Multi-Autonomous Underwater Vehicles Using Composite Neural Learning. IEEE Transactions on Neural Networks and Learning Systems, 32, 5565-5574. >https://doi.org/10.1109/TNNLS.2021.3057068
Liu, X., Zou, Y., Meng, Z. and You, Z. (2020) Coordinated Attitude Synchronization and Tracking Control of Multiple Spacecraft over a Communication Network with a Switching Topology. IEEE Transactions on Aerospace and Electronic Systems, 56, 1148-1162. >https://doi.org/10.1109/TAES.2019.2925512
Du, H., Wen, G., Cheng, Y., Lu, W. and Huang, T. (2020) Designing Discrete-Time Sliding Mode Controller with Mismatched Disturbances Compensation. IEEE Transactions on Industrial Informatics, 16, 4109-4118. >https://doi.org/10.1109/TII.2019.2957002
Quiroz, D. and Cuellar, F. (2019) Design of a Low Cost AUV with Adaptive Backstepping Control System to Monitor the Peruvian Coastline. OCEANS 2019, Marseille, 14 October 2019, 1-6. >https://doi.org/10.1109/OCEANSE.2019.8867249
Dai, S.-L., He, S., Wang, M. and Yuan, C. (2019) Adaptive Neural Control of Underactuated Surface Vessels with Prescribed Performance Guarantees. IEEE Transactions on Neural Networks and Learning Systems, 30, 3686-3698. >https://doi.org/10.1109/TNNLS.2018.2876685
Chen, W., Wen, C., Hua, S. and Sun, C. (2014) Distributed Cooperative Adaptive Identification and Control for a Group of Continuous-Time Systems with a Cooperative PE Condition via Consensus. IEEE Transactions on Automatic Control, 59, 91-106. >https://doi.org/10.1109/TAC.2013.2278135
Wang, Y.-W., Lei, Y., Bian, T. and Guan, Z.-H. (2020) Distributed Control of Nonlinear Multiagent Systems with Unknown and Nonidentical Control Directions via Event-Triggered Communication. IEEE Transactions on Cybernetics, 50, 1820-1832. >https://doi.org/10.1109/TCYB.2019.2908874
Tayebi, A., Tadjine, M. and Rachid, A. (2001) Invariant Manifold Approach for the Stabilization of Nonholonomic Chained Systems: Application to a Mobile Robot. Nonlinear Dynamics, 24, 167-181.
Sankaranarayanan, V. and Mahindrakar, A.D. (2009) Switched Control of a Nonholonomic Mobile Robot. Communications in Nonlinear Science and Numerical Simulation, 14, 2319-2327. >https://doi.org/10.1016/j.cnsns.2008.06.002
Minami, I., Wirianski, A., Harakawa, R., Wakabayashi, N. and Murray, G.M. (2018) The Three-Axial Gyroscope Sensor Detects the Turning Point between Opening and Closing Phases of Chewing. Clinical and Experimental Dental Research, 4, 249-254.
Wimmer, H. and Yoon, V.Y. (2017) Counterfeit Product Detection: Bridging the Gap between Design Science and Behavioral Science in Information Systems Research. Decision Support Systems, 104, 1-12.
Wang, S.G. and Liang, X. (2014) A Parameter Estimation Framework for Multiscale Kalman Smoother Algorithm in Precipitation Data Fusion. Water Resources Research, 50, 8675-8693.