References
王宇宁, 刘强, 杨雷. 中国油气产业发展分析与展望报告蓝皮书: 2022-2023 [M]. 北京: 中国经济出版社, 2023: 32-56.
王祖纲, 王克楠, 孙秀娟. 中国石油“走出去”的成功实践与保障国家能源安全——专访中国世界石油理事会国家委员会主任王宜林[J]. 世界石油工业, 2023, 30(4): 1-7.
Maurer, W.C. (1962) The “Perfect-Cleaning” Theory of Rotary Drilling. Journal of Petroleum Technology, 14, 1270-1274. >https://doi.org/10.2118/408-pa
Bourgoyne, A.T. and Young, F.S. (1974) A Multiple Regression Approach to Optimal Drilling and Abnormal Pressure Detection. Society of Petroleum Engineers Journal, 14, 371-384. >https://doi.org/10.2118/4238-pa
Bourgoyne Jr., A.T., Millheim, K.K., Chenevert, M.E., et al. (1986) Applied Drilling Engineering. Society of Petroleum Engineers. >https://doi.org/10.2118/9781555630010
Hareland, G. and Rampersad, P.R. (1994). Drag-Bit Model Including Wear. Proceedings of SPE Latin America/Caribbean Petroleum Engineering Conference, Buenos Aires, 27-29 April 1994. >https://doi.org/10.2523/26957-ms
Motahhari, H.R., Hareland, G. and James, J.A. (2010) Improved Drilling Efficiency Technique Using Integrated PDM and PDC Bit Parameters. Journal of Canadian Petroleum Technology, 49, 45-52. >https://doi.org/10.2118/141651-pa
Seifabad, M.C. and Ehteshami, P. (2013) Estimating the Drilling Rate in Ahvaz Oil Field. Journal of Petroleum Exploration and Production Technology, 3, 169-173. >https://doi.org/10.1007/s13202-013-0060-3
Hegde, C.M., Wallace, S.P. and Gray, K.E. (2015) Use of Regression and Bootstrapping in Drilling Inference and Prediction. SPE Middle East Intelligent Oil and Gas Conference and Exhibition, Abu Dhabi, 15-16 September 2015. >https://doi.org/10.2118/176791-MS
Keshavarz Moraveji, M. and Naderi, M. (2016) Drilling Rate of Penetration Prediction and Optimization Using Response Surface Methodology and Bat Algorithm. Journal of Natural Gas Science and Engineering, 31, 829-841. >https://doi.org/10.1016/j.jngse.2016.03.057
Deng, Y., Chen, M., Jin, Y., Zhang, Y., Zou, D. and Lu, Y. (2016) Theoretical and Experimental Study on the Penetration Rate for Roller Cone Bits Based on the Rock Dynamic Strength and Drilling Parameters. Journal of Natural Gas Science and Engineering, 36, 117-123. >https://doi.org/10.1016/j.jngse.2016.10.019
Al-AbdulJabbar, A., Elkatatny, S., Mahmoud, M., Abdelgawad, K. and Al-Majed, A. (2018) A Robust Rate of Penetration Model for Carbonate Formation. Journal of Energy Resources Technology, 141, Article 042903. >https://doi.org/10.1115/1.4041840
李阳, 廉培庆, 薛兆杰, 等. 大数据及人工智能在油气田开发中的应用现状及展望[J]. 中国石油大学学报(自然科学版), 2020, 44(4): 1-11.
Shi, X., Liu, G., Gong, X., Zhang, J., Wang, J. and Zhang, H. (2016) An Efficient Approach for Real-Time Prediction of Rate of Penetration in Offshore Drilling. Mathematical Problems in Engineering, 2016, Article 3575380. >https://doi.org/10.1155/2016/3575380
Ashrafi, S.B., Anemangely, M., Sabah, M. and Ameri, M.J. (2019) Application of Hybrid Artificial Neural Networks for Predicting Rate of Penetration (ROP): A Case Study from Marun Oil Field. Journal of Petroleum Science and Engineering, 175, 604-623. >https://doi.org/10.1016/j.petrol.2018.12.013
Anemangely, M., Ramezanzadeh, A., Tokhmechi, B., Molaghab, A. and Mohammadian, A. (2018) Drilling Rate Prediction from Petrophysical Logs and Mud Logging Data Using an Optimized Multilayer Perceptron Neural Network. Journal of Geophysics and Engineering, 15, 1146-1159. >https://doi.org/10.1088/1742-2140/aaac5d
杨顺辉, 郭珍珍, 张洪宝, 等. 基于集成迁移学习的机械钻速预测[J]. 计算机系统应用, 2022, 31(10): 270-278.
Jiang, J. and Guo, Z. (2023) Unsupervised Adversarial Domain Adaptation Regression for Rate of Penetration Prediction. SPE Journal, 28, 2604-2618. >https://doi.org/10.2118/214680-pa