3. 未来西北太平洋TC频数的长期趋势及原因3.1. 未来TC频数的长期趋势Figure 1. (a) Interannual variability, (b) Spatial distribution, and (c) Spatial probability distribution of TCGF in the peak season (July-October) simulated by the MRI-AGCM3-2-H over the WNP (Dashed lines indicate long-term trends in (a), contour lines represent the climatological mean of high resSST-present experiments, shading indicates changes, and dots indicate significance at the 95% confidence level in (b) (c)).--图1. MRI-AGCM3-2-H模式中模拟的WNP的TC盛季(7~10月)TCGF的(a) 年际变化(虚线表示长期趋势)、(b) 空间分布和(c) 空间比例分布(等值线表示历史试验的气候平均态,填色图表示未来的变化,打点表示通过95%显著性检验)--
Figure 2. Spatial distribution of (a) DGPI changes and (b) Contributions of various factors in the main TC generation region, (c) 200~850 hPa vertical wind shear, (d) Zonal gradient of meridional wind at 500 hPa, (e) 500 hPa vertical velocity, (f) 850 hPa absolute vorticity in the high resSST-future experiment of the MRI-AGCM3-2-H.--图2. MRI-AGCM3-2-H模式未来试验中(a) DGPI变化、(b) TC主要生成区的各项贡献,(c) 200~850 hPa垂直风切变、(d) 500 hPa纬向风的经向梯度、(e) 500 hPa垂直速度和(f) 850 hPa绝对涡度变化的空间分布--4. 未来西北太平洋STY频数的长期趋势及原因4.1. 未来STY频数的长期趋势
Figure 3. (a) Interannual variability of STY and (b) Spatial distribution of STY development region in the peak season (July-October) of the WNP simulated by the MRI-AGCM3-2-H model (Dashed lines indicate long-term trends in (a), contour lines represent the climatological mean of high resSST-present experiments, shading indicates changes, and dots indicate significance at the 95% confidence level in (b)).--图3. MRI-AGCM3-2-H模式中模拟的WNP的TC盛季(7~10月) (a) STY的年际变化(虚线表示长期趋势),(b) STY发展区(等值线表示历史试验的气候平均态,填色图表示未来的变化,打点表示通过95%显著性检验)--4.2. 未来STY频数减少的原因
Figure 4. (a) Climatological distribution and (b) The long-term trend of the ventilation index in the peak season (July-October) of the WNP simulated by the MRI-AGCM3-2-H model and (Contour range indicates significance at the 90% level)--图4. MRI-AGCM3-2-H模式中模拟的WNP的TC盛季(7~10月) (a) 历史试验的通风指数气候态分布和(b) 通风指数的长期趋势(等值线范围表示通过90%显著性检验)--
Figure 5. Long-term trends of (a) Ventilation index, (b) 200~850 hPa vertical wind Shear, (c) Thermodynamic parameters, and (d) Maximum potential intensity within the STY development region in the peak season (July-October) of the WNP simulated by the MRI-AGCM3-2-H model--图5. MRI-AGCM3-2-H模式中模拟的WNP的TC盛季(7~10月)在STY发展区内(a) 通风指数,(b) 200 ~ 850 hPa垂直风切变,(c) 热力学参数和(d) 最大潜在强度的长期趋势--5. 未来影响TC生成和发展的环流系统变化
Figure 6. Climatological state of 850 hPa relative vorticity and wind field in the months of July to October for (a) High resSST-present experiments and (b) High resSST-future experiments in the MRI-AGCM3-2-H, (c) The spatial distribution of changes in high resSST-future experiments and (d) Long-term variation trend of monsoon trough intensity index and TCGF (Red line indicates the position of the monsoon trough in high resSST-present experiments, blue line indicates the position of the monsoon trough in high resSST-future experiments)--图6. MRI-AGCM3-2-H模式对7~10月中(a) 历史试验和(b) 未来试验中850 hPa相对涡度和风场的气候态、(c) 未来试验变化的空间分布和(d) 季风槽强度指数与TCGF的长期变化趋势(红线表示历史试验中季风槽的位置,蓝线表示未来试验中季风槽的位置)--
Figure 7. Spatial distribution of 500 hPa geopotential height in July-October for (a) High resSST-present experiment and (b) High resSST-future experiment of the MRI-AGCM3-2-H, and (c) Its change in the high resSST-future experiment--图7. MRI-AGCM3-2-H模式7~10月中(a) 历史试验和(b) 未来试验中500 hPa位势高度和(c) 未来试验变化的空间分布--Figure 8. Changes in the tropospheric temperature in the months of July to October in the MRI-AGCM3-2-H model: (a) Meridional vertical profile and (b) Zonal vertical profile for high resSST-future experiments compared to high resSST-present experiments--图8. MRI-AGCM3-2-H模式中7~10月未来试验与历史试验对流层温度(a) 纬向垂直剖面和(b) 经向垂直剖面的变化--
References
Intergovernmental Panel on Climate Change (2021) Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Webster, P.J., Holland, G.J., Curry, J.A. and Chang, H.-R. (2005) Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment. Science, 309, 1844-1846. >https://doi.org/10.1126/science.1116448
Klotzbach, P.J. and Landsea, C.W. (2015) Extremely Intense Hurricanes: Revisiting Webster et al. (2005) after 10 Years. Journal of Climate, 28, 7621-7629. >https://doi.org/10.1175/JCLI-D-15-0188.1
Wu, L., Zhao, H., Wang, C., Cao, J. and Liang, J. (2022) Understanding of the Effect of Climate Change on Tropical Cyclone Intensity: A Review. Advances in Atmospheric Sciences, 39, 205-221. >https://doi.org/10.1007/s00376-021-1026-x
Wu, Q., Wang, X. and Tao, L. (2020) Interannual and Interdecadal Impact of Western North Pacific Subtropical High on Tropical Cyclone Activity. Climate Dynamics, 54, 2237-2248. >https://doi.org/10.1007/s00382-019-05110-7
Bai, C., Zhang, R., Bao, S., San Liang, X. and Guo, W. (2018) Forecasting the Tropical Cyclone Genesis over the Northwest Pacific through Identifying the Causal Factors in Cyclone-Climate Interactions. Journal of Atmospheric and Oceanic Technology, 35, 247-259. >https://doi.org/10.1175/JTECH-D-17-0109.1
Kim, H.-K. and Seo, K.-H. (2016) Cluster Analysis of Tropical Cyclone Tracks over the Western North Pacific Using a Self-Organizing Map. Journal of Climate, 29, 3731-3751. >https://doi.org/10.1175/JCLI-D-15-0380.1
Roberts, M.J., Camp, J., Seddon, J., Vidale, P.L., Hodges, K., Vanniere, B., Mecking, J., Haarsma, R., Bellucci, A., Scoccimarro, E., Caron, L.-P., Chauvin, F., Terray, L., Valcke, S., Moine, M.-P., Putrasahan, D., Roberts, C., Senan, R., Zarzycki, C. and Ullrich, P. (2020) Impact of Model Resolution on Tropical Cyclone Simulation Using the HighResMIP-PRIMAVERA Multi-Model Ensemble. Journal of Climate, 33, 2557-2583. >https://doi.org/10.1175/JCLI-D-19-0639.1
Yamada, Y., Satoh, M., Sugi, M., Kodama, C., Noda, A.T., Nakano, M. and Nasuno, T. (2017) Response of Tropical Cyclone Activity and Structure to Global Warming in a High-Resolution Global Nonhydrostatic Model. Journal of Climate, 30, 9703-9724. >https://doi.org/10.1175/JCLI-D-17-0068.1
Tang, Y., Huangfu, J., Huang, R. and Chen, W. (2022) Simulation and Projection of Tropical Cyclone Activities over the Western North Pacific by CMIP6 HighResMIP. Journal of Climate, 35, 4171-4194. >https://doi.org/10.1175/JCLI-D-21-0760.1
Ullrich, P.A. and Zarzycki, C.M. (2017) TempestExtremes: A framework for Scale-Insensitive Pointwise Feature Tracking on Unstructured Grids. Geoscientific Model Development, 10, 1069-1090. >https://doi.org/10.5194/gmd-10-1069-2017
Wang, B. and Murakami, H. (2020) Dynamic Genesis Potential Index for Diagnosing Present-Day and Future Global Tropical Cyclone Genesis. Environmental Research Letters, 15, Article ID: 114008. >https://doi.org/10.1088/1748-9326/abbb01
Tang, B. and Emanuel, K. (2012) A Ventilation Index for Tropical Cyclones. Bulletin of the American Meteorological Society, 93, 1901-1912. >https://doi.org/10.1175/BAMS-D-11-00165.1
Bryan, G.H. (2008) On the Computation of Pseudoadiabatic Entropy and Equivalent Potential Temperature. Monthly Weather Review, 136, 5239-5245. >https://doi.org/10.1175/2008MWR2593.1
Wu, L. and Zhao, H. (2012) Dynamically Derived Tropical Cyclone Intensity Changes over the Western North Pacific. Journal of Climate, 25, 89-98. >https://doi.org/10.1175/2011JCLI4139.1
邢彩盈, 吴胜安, 朱晶晶, 胡德强. 南海-西北太平洋季风槽及其与热带气旋的关系: 不同再分析资料对比[J]. 海洋预报, 2023(6): 78-89.
Yang, K., Cai, W., Huang, G., Hu, K., Ng, B. and Wang, G. (2022) Increased Variability of the Western Pacific Subtropical High under Greenhouse Warming. Proceedings of the National Academy of Sciences, 119, e2120335119. >https://doi.org/10.1073/pnas.2120335119