pi Pharmacy Information 2160-441X 2160-4452 beplay体育官网网页版等您来挑战! 10.12677/pi.2024.134042 pi-91641 Articles 医药卫生 γδT细胞在自身免疫性疾病发生发展中的参与和作用
Participation and Role of γδT Cells in the Occurrence and Development of Autoimmune Diseases
李晨夕 中国药科大学中药学院中药药理与中医药学系,江苏 南京 05 07 2024 13 04 362 368 5 6 :2024 9 6 :2024 9 7 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 自身免疫性疾病作为一种系统性慢性疾病,其发病机制涉及多种细胞(如T细胞、B细胞、巨噬细胞等)及其相互作用。γδT细胞是一种独特的T淋巴细胞亚群,连接先天性和适应性免疫应答,参与多种生理和病理过程。近年来的研究表明,γδT细胞与多种自身免疫性疾病的发生发展相关。本文对其研究概况进行综述,为阐明自身免疫性疾病的病机及相关药物研发提供参考。
As a systemic chronic disease, the pathogenesis of autoimmune diseases involves various cells (such as T cells, B cells, macrophages, etc.) and their interaction. γδT cells are a unique subset of T lymphocytes bridging innate and adaptive immune responses, participating in various physiological and pathological processes. In recent years, numerous studies have indicated the association of γδT cells with the onset and progression of several autoimmune diseases. This review summarizes the involvement and roles of γδT cells in the occurrence and development of autoimmune diseases.
γδT细胞,自身免疫性疾病,类风湿性关节炎,银屑病,多发性硬化症
γδT Cells
Autoimmune Diseases Rheumatoid Arthritis Psoriasis Multiple Sclerosis
1. 引言

γδT细胞是淋巴细胞的一个亚群,于1986年第一次被发现报道 [1] ,仅占人类CD3 + T细胞总数的1~10%,占人类循环T细胞总数的1~6% [2] 。其T细胞受体(T cell receptor, TCR)由γ和δ链组成,而不是α链和β链 [3] 。γδT细胞的TCR主要由七种Vγ链类型(Vγ2、3、4、5、8、9和11)与四种Vδ链类型(Vδ1、2、3和5)两两配对组成 [4] 。γδT细胞在介导先天性和适应性免疫应答中发挥重要作用 [5] ,可以不依赖主要组织相容性复合体(Major histocompatibility complex, MHC)快速响应TCR信号以及模式识别受体信号,如Toll样受体(Toll-like receptors, TLR)信号,被认为是对抗病原体第一道防线的关键细胞 [6] 。γδT细胞在胸腺中发育成熟后,迁移到皮肤、脾脏、肠道和肝脏等组织成为驻留细胞,且不同类别的γδT细胞分布在不同组织中,例如,小鼠Vγ5δ1 T细胞主要驻留在皮肤表皮层,而Vγ4+和Vγ6 + T细胞主要驻留在小鼠皮肤真皮层。根据细胞功能,γδT细胞可以分为主要分泌干扰素γ (IFN-γ)的γδT1细胞和主要产生白细胞介素17 (IL-17)的γδT17细胞 [7] 。γδT细胞能产生多种促炎细胞因子,如IL-17、IFN-γ、TNF-α和IL-22。越来越多的研究表明,γδT细胞与多种炎症和自身免疫性疾病密切相关,例如炎症性肠病、银屑病、类风湿性关节炎和多发性硬化症等 [8]

自身免疫性疾病,是多种因素引起体内病理性自身免疫应答破坏和损伤自身组织和细胞成分,导致组织损害和器官功能障碍所引起的疾病 [9] ,其患病率约为5~7%。自身免疫性疾病可以影响大多数器官或组织,包括皮肤、关节、肌肉、内脏器官以及神经系统。临床上常见的自身免疫性疾病主要包括类风湿性关节炎(Rheumatoid arthritis, RA)、炎症性肠病(Inflammatory bowel disease, IBD)、多发性硬化症(multIple sclerosis, MS)、银屑病(psoriasis)和系统性红斑狼疮(Systemic lupus erythematosus, SLE)等。自身免疫性疾病病因复杂,与遗传和表观遗传因素以及环境因素等有关 [10] 。目前临床上用于治疗自身免疫性疾病的药物主要包括抗炎药物、免疫抑制剂和生物制剂。这些药物可以帮助控制症状并减轻炎症,但尚无治愈自身免疫性疾病的方法。本文介绍γδT细胞在自身免疫性疾病发生发展中的参与和作用,为治疗自身免疫性疾病提供新的思路。

2. γδT细胞在自身免疫性疾病发生发展中的参与和作用 2.1. 类风湿性关节炎

RA是一种慢性、全身性、炎症性疾病,以慢性、对称性、多滑膜关节炎和关节外病变为主要临床表现,患病率约为0.25%~1% [11] 。多种免疫细胞(如T细胞、B细胞、自然杀伤细胞、γδT细胞等)在RA的发生和发展中发挥重要的调节作用 [12]

与健康对照组相比,RA患者外周血γδT细胞选择性扩增了4% [13] ,而滑膜中γδT细胞百分比选择性扩增8.8% [14] 。滑膜中浸润的γδT细胞数目越多,RA患者的组织炎症评分越高。有研究表明RA患者外周血γδT细胞数目与全身炎症标志物C反应蛋白(C-reactive protein, CRP)值呈显著正相关,Vδ2 T细胞或Vδ1 T细胞的特异性敲除则与长期重症相关 [15] 。此外,在胶原诱导的关节炎(Collagen Induced Arthritis, CIA)模型中,产生IL-17的γδT17细胞是IL-17的主要来源 [16] ,γδT细胞驻留在小鼠的滑膜中,在CIA小鼠关节中,γδT细胞的比例急剧上升。产生IL-17的γδT细胞在CIA中起致病作用 [17] 。CIA模型构建前敲除γδT细胞导致CIA的发病时间显著延迟,疾病严重程度显著降低;CIA模型小鼠中,γδT细胞缺失会减轻其严重程度 [18]

在RA不同阶段起作用的γδT细胞亚群、产生的细胞因子、定位以及与其他免疫细胞(如CD4 T细胞、NK细胞以及非免疫细胞)的相互作用可能会影响疾病的发病机制和进展,需要进一步的研究。

2.2. 多发性硬化症

MS是一种中枢神经系统慢性自身免疫性疾病,其特征包括局灶性炎症浸润、脱髓鞘斑块、反应性胶质增生和轴突损伤 [19] 。自身反应性免疫细胞从外周循环浸润到大脑和脊髓在MS的发展中起着关键作用。

γδT细胞在多发性硬化症(MS)的发病机制中扮演着重要角色。MS患者外周血和脑脊液中γδT细胞数目显著增加 [20] [21] 。与正常人群相比,MS患者白质斑块中表达Vδ1、Vδ2、和Vδ9 TCR的γδT细胞浸润比例上调 [22] 。γδT细胞在MS患者的脑脊液中产生细胞因子和趋化因子,并具有诱导其他细胞裂解的能力,例如少突胶质细胞 [23] 。实验性自身免疫性脑脊髓炎(Experimental autoimmune encephalomyelitis, EAE)小鼠中枢神经系统中γδT细胞比例上调 [24] 。在EAE中,γδT细胞具有多种作用,这可能取决于疾病的阶段、细胞的活化状态和EAE诱导的模式。γδT细胞以抗原非依赖性方式调节细胞因子IL-12和IFN-γ产生,从而调节EAE免疫反应的早期效应阶段 [25] 。在EAE的急性期和慢性期,与野生型小鼠相比,特异性敲除γ/δT细胞受体(Tcrd)可缓解EAE疾病严重程度。Blink等 [26] 最近的一项研究表明,产生IL-17的Vg4+ γδT细胞会加剧EAE。给B10PL小鼠注射γ/δTCR特异性抗体(UC7-13D5)敲除γδT细胞,加重EAE的疾病严重程度并引起疾病复发 [27] 。过继转移γδT细胞不仅加重EAE的严重程度,还恢复IL-12的生成和T细胞增殖 [25] 。过继转移小鼠髓鞘碱性蛋白(Myelin basic protein, MBP)激活的淋巴细胞导致中枢神经系统中γδT细胞浸润在EAE急性高峰期增加,在缓解期间减少,随后又在复发期增加。

总的来说,γδT细胞在MS中通过调节免疫反应和直接参与神经组织损伤等途径发挥重要作用。对于这些细胞活化机制的深入了解有助于为MS的治疗提供新靶点和策略。

2.3. 炎症性肠病

IBD包括一系列以遗传易感宿主对肠道微生物群的先天性和适应性免疫反应失调为特征的肠道疾病 [28] 。根据解剖学、临床和组织病理学标准,IBD主要分为克罗恩病(crohn’s disease, CD)和溃疡性结肠炎(ulcerative colitis, UC) [29]

与正常人群相比,UC和CD患者外周血、炎症和组织损伤区域γδT细胞比例升高 [30] ,CD患者黏膜中γδT细胞数目增加。CD患者各个时期IL-17都呈现低水平,可能存在γδT细胞的原发性缺陷 [31] 。此外,Kadivar等人最近研究表明,表达CD8αβ+的γδT细胞在活动性IBD患者的肠道中减少,与疾病活动度呈负相关,并在阿达木单抗治疗后恢复正常,这表明该亚群在IBD中具有保护作用 [32] 。而单克隆抗体去除γδT细胞后加重小鼠结肠炎的严重程度,升高死亡率。敲除γδT细胞显著加重三硝基苯磺酸(诱导的大鼠结肠炎的严重程度 [33] 。在葡聚糖硫酸钠盐诱导的结肠炎中,γδT17细胞通过募集Gr-1+CD11b+髓源抑制细胞发挥保护作用 [34]

综上所述,γδT细胞在IBD中扮演着重要的角色,可能通过调节免疫反应和保护肠道黏膜完整性影响疾病的发展和严重程度。深入了解这些细胞的作用对于开发新的IBD治疗策略具有重要意义。

2.4. 银屑病

银屑病是一种常见的慢性自身免疫性疾病,在全球范围内发病率约2%~3%,其组织病理学特征为表皮增厚、颗粒层消失、角质形成细胞(Keratinocyte, KCs)过度增殖、角化不全、炎症细胞浸润和毛细血管扩张 [35] 。近十年来大量临床和基础研究表明,IL-23/IL-17轴在银屑病的发病机制中起着重要作用 [36]

银屑病患者皮肤中IL-17A、IL-17F和IL-22主要由γδT细胞产生 [37] ,皮肤病变部位中产生IL-17的γδT细胞的比例升高 [34] 。与健康对照组相比,银屑病患者皮肤中Vγ9Vδ2T细胞比例升高,而银屑病患者血液中观察到Vγ9Vδ2细胞显着减少 [38] 。据报道,一些γδT细胞可诱导角质形成细胞产生抗菌肽,包括β-防御素2、S100A7和S100A8,从而在局部上皮防御中发挥保护功能 [39] 。IL-23或咪喹莫特(IMQ)诱导的小鼠银屑病样模型中,相比于野生型小鼠,TCRγ/δ敲除小鼠表皮增生和炎症反应明显减少 [40] 。皮内注射IL-23可导致CCR6+γδT细胞在表皮中积聚,IL-17A和IL-22的表达显著上调,诱导严重的银屑病样皮炎 [41] 。此外,贯叶金丝桃素通过调节γδT17细胞活化,改善咪喹莫特诱导的银屑病样小鼠皮肤炎症 [42] ,D-甘露糖抑制γδT17细胞活化,缓解小鼠银屑病 [43]

综上所述,γδT细胞在银屑病中发挥着重要作用,通过调节炎症反应和局部皮肤防御机制参与疾病的发展和进展,真皮γδT细胞及其相关分子有望成为治疗银屑病的新靶点。

2.5. 其他

系统性红斑狼疮(SLE)的病变特征是产生针对多种细胞核和细胞质抗原的自身抗体,累及多个器官,如皮肤、关节、肾脏和神经元组织 [44] 。与健康对照组相比,SLE患者外周血中γδT细胞(Vδ1和Vδ2亚型)的数量明显较低 [45] ,Vγ2 γδT细胞数目减少,Vγ3 γδT细胞数目升高 [46] ,但是γδT细胞的特定亚群产生的抗炎细胞因子及其抗炎作用尚不清楚。SLE患者还显示γδT细胞表面上的抑制受体NKG2A表达下调,激活性受体CD69和HLA-DR表达上调 [47]

干燥综合症(SS)是一种主要累及外分泌腺体全身性自身免疫性疾病,其特征是唾液腺和泪腺被破坏,导致口腔和眼部干燥 [48] 。原发性SS患者外周血γδT细胞数目增加 [49] ;与正常人群相比,SS患者HLA-DR+和CD16 + γδT细胞比例升高 [50] 。Id3特异性敲除(Id3-/-)小鼠被用作人类SS的小鼠模型,Id3-/-小鼠中产生TNF-a、IFN-γ和IL-4的Vg1.1 + Vd6.3 + T细胞比例上调 [51]

γδT细胞在SLE和SS中的异常表达和功能可能在这些自身免疫性疾病的发病和进展中发挥重要作用,但其确切作用机制仍需进一步研究。

3. 结语

本文总结了γδT细胞在自身免疫性疾病发生发展中的参与和作用,包括类风湿关节炎、多发性硬化症、炎症性肠病、银屑病、系统性红斑狼疮和干燥综合症。

自身免疫性疾病作为一种系统性慢性疾病,其发病机制与多种促炎因子有关,如TNF-α、IL-1β、INF-γ和IL-17。银屑病、多发性硬化症等自身免疫性疾病患者及其模型小鼠中IL-17、INF-γ等炎性因子主要由γδT细胞产生。目前靶向TNF-α、IL-17A、IL23等细胞因子的生物药在临床上被用于治疗自身免疫性疾病。如:阿达木、司库奇尤和依奇珠单抗用于治疗银屑病;依那西普和阿达木单抗用于治疗RA。作为IL-17、TNF-α等细胞因子的重要贡献者,γδT细胞及其相关分子或将成为药物治疗的靶点。值得注意的是,γδT细胞的不同亚型在自身免疫性疾病的作用不同,探明其作用与机制是目前的重要研究任务。

References Brenner, M.B., McLean, J., Dialynas, D.P., Strominger, J.L., Smith, J.A., Owen, F.L., et al. (1986) Identification of a Putative Second T-Cell Receptor. Nature, 322, 145-149. >https://doi.org/10.1038/322145a0 Bettin, L., Darbellay, J., van Kessel, J., Scruten, E., Napper, S. and Gerdts, V. (2023) Distinct, Age-Dependent TLR7/8 Signaling Responses in Porcine Gamma-Delta T Cells. Molecular Immunology, 160, 80-94. >https://doi.org/10.1016/j.molimm.2023.06.012 Abou-El-Hassan, H., Rezende, R.M., Izzy, S., Gabriely, G., Yahya, T., Tatematsu, B.K., et al. (2023) Vγ1 and Vγ4 Gamma-Delta T Cells Play Opposing Roles in the Immunopathology of Traumatic Brain Injury in Males. Nature Communications, 14, Article No. 4286. >https://doi.org/10.1038/s41467-023-39857-9 Wang, C.Q., Lim, P.Y. and Tan, A.H. (2024) Gamma/Delta T Cells as Cellular Vehicles for Anti-Tumor Immunity. Frontiers in Immunology, 14, Article 1282758. >https://doi.org/10.3389/fimmu.2023.1282758 Costa, G.P., Mensurado, S. and Silva-Santos, B. (2023) Therapeutic Avenues for γδ T Cells in Cancer. Journal for ImmunoTherapy of Cancer, 11, e007955. >https://doi.org/10.1136/jitc-2023-007955 Li, J., Cao, Y., Liu, Y., Yu, L., Zhang, Z., Wang, X., et al. (2024) Multiomics Profiling Reveals the Benefits of Gamma-Delta (γδ) T Lymphocytes for Improving the Tumor Microenvironment, Immunotherapy Efficacy and Prognosis in Cervical Cancer. Journal for ImmunoTherapy of Cancer, 12, e008355. >https://doi.org/10.1136/jitc-2023-008355 Rao, A., Agrawal, A., Borthakur, G., Battula, V.L. and Maiti, A. (2024) Gamma Delta T Cells in Acute Myeloid Leukemia: Biology and Emerging Therapeutic Strategies. Journal for ImmunoTherapy of Cancer, 12, e007981. >https://doi.org/10.1136/jitc-2023-007981 Paul, S., Shilpi, and Lal, G. (2014) Role of Gamma-Delta (γδ) T Cells in Autoimmunity. Journal of Leukocyte Biology, 97, 259-271. >https://doi.org/10.1189/jlb.3ru0914-443r Pisetsky, D.S. (2023) Pathogenesis of Autoimmune Disease. Nature Reviews Nephrology, 19, 509-524. >https://doi.org/10.1038/s41581-023-00720-1 Lichtiger, A., Fadaei, G. and Tagoe, C.E. (2024) Autoimmune Thyroid Disease and Rheumatoid Arthritis: Where the Twain Meet. Clinical Rheumatology, 43, 895-905. >https://doi.org/10.1007/s10067-024-06888-6 Di Matteo, A., Bathon, J.M. and Emery, P. (2023) Rheumatoid Arthritis. The Lancet, 402, 2019-2033. >https://doi.org/10.1016/s0140-6736(23)01525-8 Jang, S., Kwon, E. and Lee, J.J. (2022) Rheumatoid Arthritis: Pathogenic Roles of Diverse Immune Cells. International Journal of Molecular Sciences, 23, Article 905. >https://doi.org/10.3390/ijms23020905 Buchanan, W.W., Kean, C.A., Kean, W.F. and Rainsford, K.D. (2023) Rheumatoid Arthritis. Inflammopharmacology, 32, 3-11. >https://doi.org/10.1007/s10787-023-01221-0 Bank, I. (2020) The Role of Gamma Delta T Cells in Autoimmune Rheumatic Diseases. Cells, 9, Article 462. >https://doi.org/10.3390/cells9020462 Zhu, T., Zhu, L., Sheng, C., Wu, D., Gu, Q., Jiang, Z., et al. (2024) Hyperactivation and Enhanced Cytotoxicity of Reduced CD8 +Gamma Delta T Cells in the Intestine of Patients with Crohn’s Disease Correlates with Disease Activity. BMC Immunology, 25, Article No. 15. >https://doi.org/10.1186/s12865-024-00606-2 Roark, C.L., French, J.D., Taylor, M.A., Bendele, A.M., Born, W.K. and O’Brien, R.L. (2007) Exacerbation of Collagen-Induced Arthritis by Oligoclonal, Il-17-Producing γδ T Cells. The Journal of Immunology, 179, 5576-5583. >https://doi.org/10.4049/jimmunol.179.8.5576 Ito, Y., Usui, T., Kobayashi, S., Iguchi‐Hashimoto, M., Ito, H., Yoshitomi, H., et al. (2009) Gamma/Delta T Cells Are the Predominant Source of Interleukin‐17 in Affected Joints in Collagen‐induced Arthritis, but Not in Rheumatoid Arthritis. Arthritis&Rheumatism, 60, 2294-2303. >https://doi.org/10.1002/art.24687 Peterman, G.M., Spencer, C., Sperling, A.I. and Bluestone, J.A. (1993) Role of Gamma Delta T Cells in Murine Collagen-Induced Arthritis. The Journal of Immunology, 151, 6546-6558. >https://doi.org/10.4049/jimmunol.151.11.6546 Jakimovski, D., Bittner, S., Zivadinov, R., Morrow, S.A., Benedict, R.H., Zipp, F., et al. (2024) Multiple Sclerosis. The Lancet, 403, 183-202. >https://doi.org/10.1016/s0140-6736(23)01473-3 Zarobkiewicz, M.K., Kowalska, W., Roliński, J. and Bojarska-Junak, A.A. (2019) γδ T Lymphocytes in the Pathogenesis of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Journal of Neuroimmunology, 330, 67-73. >https://doi.org/10.1016/j.jneuroim.2019.02.009 Maimaitijiang, G., Shinoda, K., Nakamura, Y., Masaki, K., Matsushita, T., Isobe, N., et al. (2018) Association of Decreased Percentage of Vδ2 +Vγ9 +γδ T Cells with Disease Severity in Multiple Sclerosis. Frontiers in Immunology, 9, Article 748. >https://doi.org/10.3389/fimmu.2018.00748 Freedman, M.S., D’Souza, S. and Antel, J.P. (1997) γδ T-Cell-Human Glial Cell Interactions. I. in vitro Induction of γδ T-Cell Expansion by Human Glial Cells. Journal of Neuroimmunology, 74, 135-142. >https://doi.org/10.1016/s0165-5728(96)00217-2 Wohler, J.E., Smith, S.S. and Barnum, S.R. (2009) γδ T Cells: The Overlooked T‐Cell Subset in Demyelinating Disease. Journal of Neuroscience Research, 88, 1-6. >https://doi.org/10.1002/jnr.22176 Malik, S., Want, M.Y. and Awasthi, A. (2016) The Emerging Roles of Gamma-Delta T Cells in Tissue Inflammation in Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 7, Article 14. >https://doi.org/10.3389/fimmu.2016.00014 Odyniec, A., Szczepanik, M., Mycko, M.P., Stasiolek, M., Raine, C.S. and Selmaj, K.W. (2004) γδ T Cells Enhance the Expression of Experimental Autoimmune Encephalomyelitis by Promoting Antigen Presentation and IL-12 Production. The Journal of Immunology, 173, 682-694. >https://doi.org/10.4049/jimmunol.173.1.682 Blink, S.E., Caldis, M.W., Goings, G.E., Harp, C.T., Malissen, B., Prinz, I., et al. (2014) γδ T Cell Subsets Play Opposing Roles in Regulating Experimental Autoimmune Encephalomyelitis. Cellular Immunology, 290, 39-51. >https://doi.org/10.1016/j.cellimm.2014.04.013 Kobayashi, Y., Kawai, K., Ito, K., Honda, H., Sobue, G. and Yoshikai, Y. (1997) Aggravation of Murine Experimental Allergic Encephalomyelitis by Administration of T-Cell Receptor γδ-Specific Antibody. Journal of Neuroimmunology, 73, 169-174. >https://doi.org/10.1016/s0165-5728(96)00187-7 Gordon, H., Burisch, J., Ellul, P., Karmiris, K., Katsanos, K., Allocca, M., et al. (2023) ECCO Guidelines on Extraintestinal Manifestations in Inflammatory Bowel Disease. Journal of Crohn’s and Colitis, 18, 1-37. >https://doi.org/10.1093/ecco-jcc/jjad108 Dart, R.J., Zlatareva, I., Vantourout, P., Theodoridis, E., Amar, A., Kannambath, S., et al. (2023) Conserved γδ T Cell Selection by BTNL Proteins Limits Progression of Human Inflammatory Bowel Disease. Science, 381, eadh0301. >https://doi.org/10.1126/science.adh0301 McVay, L.D., Li, B., Biancaniello, R., Creighton, M.A., Bachwich, D., Lichtenstein, G., et al. (1997) Changes in Human Mucosal γδ T Cell Repertoire and Function Associated with the Disease Process in Inflammatory Bowel Disease. Molecular Medicine, 3, 183-203. >https://doi.org/10.1007/bf03401672 Catalan-Serra, I., Sandvik, A.K., Bruland, T. and Andreu-Ballester, J.C. (2017) Gammadelta T Cells in Crohn’s Disease: A New Player in the Disease Pathogenesis? Journal of Crohn’s and Colitis, 11, 1135-1145. >https://doi.org/10.1093/ecco-jcc/jjx039 Kadivar, M., Petersson, J., Svensson, L. and Marsal, J. (2016) CD8αβ +γδ T Cells: A Novel T Cell Subset with a Potential Role in Inflammatory Bowel Disease. The Journal of Immunology, 197, 4584-4592. >https://doi.org/10.4049/jimmunol.1601146 Hoffmann, J.C. (2001) Role of T Lymphocytes in Rat 2,4,6-Trinitrobenzene Sulphonic Acid (TNBS) Induced Colitis: Increased Mortality after γδ T Cell Depletion and No Effect of αβ T Cell Depletion. Gut, 48, 489-495. >https://doi.org/10.1136/gut.48.4.489 Sun, X., Cai, Y., Fleming, C., Tong, Z., Wang, Z., Ding, C., et al. (2017) Innate γδT17 Cells Play a Protective Role in DSS-Induced Colitis via Recruitment of Gr-1 +CD11b +Myeloid Suppressor Cells. OncoImmunology, 6, e1313369. >https://doi.org/10.1080/2162402x.2017.1313369 Tampa, M., Mitran, M.I., Mitran, C.I., Matei, C. and Georgescu, S.R. (2024) Psoriasis: What Is New in Markers of Disease Severity? Medicina, 60, Article 337. >https://doi.org/10.3390/medicina60020337 Hawkes, J.E., Yan, B.Y., Chan, T.C. and Krueger, J.G. (2018) Discovery of the IL-23/IL-17 Signaling Pathway and the Treatment of Psoriasis. The Journal of Immunology, 201, 1605-1613. >https://doi.org/10.4049/jimmunol.1800013 Ogawa, E., Sato, Y., Minagawa, A. and Okuyama, R. (2017) Pathogenesis of Psoriasis and Development of Treatment. The Journal of Dermatology, 45, 264-272. >https://doi.org/10.1111/1346-8138.14139 Zhou, J., Zhang, J., Tao, L., Peng, K., Zhang, Q., Yan, K., et al. (2022) Up-Regulation of BTN3A1 on CD14 +Cells Promotes Vγ9vδ2 T Cell Activation in Psoriasis. Proceedings of the National Academy of Sciences, 119, e2117523119. >https://doi.org/10.1073/pnas.2117523119 Laggner, U., Di Meglio, P., Perera, G.K., Hundhausen, C., Lacy, K.E., Ali, N., et al. (2011) Identification of a Novel Proinflammatory Human Skin-Homing Vγ9Vδ2 T Cell Subset with a Potential Role in Psoriasis. The Journal of Immunology, 187, 2783-2793. >https://doi.org/10.4049/jimmunol.1100804 Pantelyushin, S., Haak, S., Ingold, B., Kulig, P., Heppner, F.L., Navarini, A.A., et al. (2012) Rorγt +Innate Lymphocytes and γδ T Cells Initiate Psoriasiform Plaque Formation in Mice. Journal of Clinical Investigation, 122, 2252-2256. >https://doi.org/10.1172/jci61862 Mabuchi, T., Takekoshi, T. and Hwang, S.T. (2011) Epidermal CCR6 +γδ T Cells Are Major Producers of IL-22 and IL-17 in a Murine Model of Psoriasiform Dermatitis. The Journal of Immunology, 187, 5026-5031. >https://doi.org/10.4049/jimmunol.1101817 Zhang, S., Zhang, J., Yu, J., Chen, X., Zhang, F., Wei, W., et al. (2021) Hyperforin Ameliorates Imiquimod-Induced Psoriasis-Like Murine Skin Inflammation by Modulating IL-17A-Producing γδ T Cells. Frontiers in Immunology, 12, Article 635076. >https://doi.org/10.3389/fimmu.2021.635076 Li, M., Cheng, H., Tian, D., Yang, L., Du, X., Pan, Y., et al. (2022) D-Mannose Suppresses γδ T Cells and Alleviates Murine Psoriasis. Frontiers in Immunology, 13, Article 840755. >https://doi.org/10.3389/fimmu.2022.840755 Siegel, C.H. and Sammaritano, L.R. (2024) Systemic Lupus Erythematosus. JAMA, 331, 1480-1491. >https://doi.org/10.1001/jama.2024.2315 Koga, T., Endo, Y., Umeda, M., Sato, T., Mizunoo, Y., Furukawa, K., et al. (2020) Reduction in the Percentage of Circulating Variable Delta 2 T Cells in Systemic Lupus Erythematosus. Clinical Immunology, 220, Article 108577. >https://doi.org/10.1016/j.clim.2020.108577 Lu, Z., Su, D., Wang, D., Li, X., Feng, X. and Sun, L. (2013) Elevated Apoptosis and Impaired Proliferation Contribute to Downregulated Peripheral γδ T Cells in Patients with Systemic Lupus Erythematosus. Clinical and Developmental Immunology, 2013, Article 405395. >https://doi.org/10.1155/2013/405395 Wang, L., Kang, N., Zhou, J., Guo, Y., Zhang, X., Cui, L., et al. (2012) Downregulation of CD94/NKG2A Inhibitory Receptor on Decreased γδ T Cells in Patients with Systemic Lupus Erythematosus. Scandinavian Journal of Immunology, 76, 62-69. >https://doi.org/10.1111/j.1365-3083.2012.02705.x Balint, G., Watson Buchanan, W., Kean, C.A., Kean, W. and Rainsford, K.D. (2023) Sjögren’s Syndrome. Inflammopharmacology, 32, 37-43. >https://doi.org/10.1007/s10787-023-01222-z Gerli, R., Agea, E., Muscat, C., et al. (1993) Functional Characterization of T Cells Bearing the Gamma/Delta T-Cell Receptor in Patients with Primary Sjögren’s Syndrome. Clinical and Experimental Rheumatology, 11, 295-299. Lamour, A., Smith, M.D., Lydyard, P.M. and Youinou, P.Y. (1995) The Majority of FcγRIII-Positive γδT Cells Do Not Express HLA-DR in Patients with Primary Sjögren’s Syndrome. Immunology Letters, 45, 153-155. >https://doi.org/10.1016/0165-2478(94)00252-m Alonzo, E.S., Gottschalk, R.A., Das, J., Egawa, T., Hobbs, R.M., Pandolfi, P.P., et al. (2009) Development of Promyelocytic Zinc Finger and ThPOK-Expressing Innate γδ T Cells Is Controlled by Strength of TCR Signaling and Id3. The Journal of Immunology, 184, 1268-1279. >https://doi.org/10.4049/jimmunol.0903218
Baidu
map