acrem Asian Case Reports in Emergency Medicine 2328-0409 2328-0395 beplay体育官网网页版等您来挑战! 10.12677/acrem.2024.123009 acrem-91601 Articles 医药卫生 矿物质和膳食补充剂对先天缺牙的影响:双样本孟德尔随机化分析
Effects of Minerals and Dietary Supplements on Congenital Tooth Agenesis: A Two-Sample Mendelian Randomization Analysis
王丽萍 新疆医科大学第一附属医院(新疆医科大学附属口腔医院),儿童口腔科,新疆 乌鲁木齐 17 07 2024 12 03 64 70 14 5 :2024 9 5 :2024 9 7 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 目的:采用孟德尔随机化研究探讨先天缺牙与矿物质和膳食补充剂摄入的因果联系。方法:从全基因组关联研究(GWAS)数据库中筛选与矿物质和膳食补充剂摄入密切相关且相互独立的单核苷酸多态性(SNP)位点,均为欧洲人群。选择finn-b-K11_HYPO_ONLY作为结局相关的SNP,同样为欧洲血统的人群,包括246名的病例和218,546例的对照组。结果:因果关联分析中,钙、鱼油、葡萄糖胺、铁、硒和锌等可作为暴露因素候选集。铁补充剂是个保护因素,其他几种补充剂与先天缺牙没有因果关系。IVW和MR Egger回归显示结果没有异质性。Egger回归分析表明没有多效性。对补充剂摄入和先天缺牙进行反向MR,所得结果先天缺牙与钙、鱼油、葡萄糖胺、铁、硒和锌等补充剂摄入没有因果关系(P > 0.05)。结论:孟德尔随机化分析结果表明摄入铁补充剂与先天缺牙存在因果关联。摄入铁补充剂是先天缺牙的保护因素。
Objective: This paper aims to investigate the causal link between congenital tooth agenesis and mineral/dietary supplement intake using Mendelian randomization. Methods: The genome-wide association study (GWAS) database was screened for single nucleotide polymorphism (SNP) that were closely associated with and independent of mineral and dietary supplement intake in European populations. Finn-b-K11_HYPO_ONLY was selected as the outcome-related SNP including 246 cases and 218,546 controls, which were derived from European ancestry population. Results: In the causal association analysis, calcium, fish oil, glucosamine, iron, selenium and zinc can be used as candidate sets of exposure factors. Iron supplement was a protective factor, and the other supplements showed no causal relationship with congenital tooth agenesis. IVW and MR Egger regression showed no heterogeneity. Egger regression analysis showed no pleiotropy. Reverse MR was performed on supplement intake and congenital tooth agenesis, which showed that there was no causal relationship between congenital tooth agenesis and the intake of supplements such as calcium, fish oil, glucosamine, iron, selenium and zinc (P > 0.05). Conclusion: Mendelian randomization analysis results suggest a causal association between iron supplement intake and congenital tooth agenesis. Intake of iron supplements was a protective factor against congenital tooth agenesis.
孟德尔随机化,先天缺牙,全基因组关联研究,铁摄入
Mendelian Randomization
Congenital Tooth Agenesis Genome-Wide Association Study Iron Intake
1. 引言

先天缺牙是一种牙齿数量异常的疾病,其根据缺牙的数目,分为牙缺失和全口无牙症 [1] 。先天缺牙的发病与遗传因素和环境相关。目前最受支持的理论认为,作为一种遗传病,先天缺牙遵循多基因遗传的模式,而环境因素,如感染、药物、放射、创伤、环境污染和牙胚发育营养不良等对基因表型的表达也可产生一定影响 [2] [3] 。但是其机制尚不明确,仍有待于进一步研究。

孟德尔随机化作为一种流行的遗传流行病学研究设计方法,将遗传变异作为工具变量,直接检验暴露因素与结局事件是否存在因果关系 [4] 。相比其他研究方法,孟德尔随机化可有效避免混杂因素和反向因果关系的干扰 [5] 。随着GWAS数据库的公开,在口腔学领域,孟德尔随机化研究相对较少,仅有个别报道称牙周炎与高血压病存在因果关系 [6] ,尚未对先天缺牙与摄入补充剂的关系开展研究。本文利用双样本孟德尔随机化方法探讨先天缺牙与补充剂摄入的关系。

2. 材料与方法 2.1. 数据来源

本研究对欧洲人群进行孟德尔随机化分析,以探讨所得结果在不同人群的普适性。欧洲人群的暴露和结局的相关数据都来自IEU数据库( https://gwas.mrcieu.ac.uk/ )。选取矿物质和其他膳食补充剂(Mineral and other dietary supplements)作为暴露因素,选择的数据如 表1 ,为2018年欧洲人群的数据;结局因素为先天缺牙,选择finn-b-K11_HYPO_ONLY作为结局相关的SNP,同样为欧洲血统的人群,包括246名的病例和218,546例的对照组。

<xref></xref>Table 1. Data set of the exposureTable 1. Data set of the exposure 表1. 暴露因素的数据信息

GWAS ID

年份

补充剂摄入

人群

性别

病例组

对照组

ukb-b-7043

2018

欧洲人群

男性和女性

31,393

429,991

ukb-b-11075

2018

鱼油

欧洲人群

男性和女性

145,707

315,677

ukb-b-11535

2018

葡萄糖胺

欧洲人群

男性和女性

89,339

372,045

ukb-b-14863

2018

欧洲人群

男性和女性

14,150

447,234

ukb-b-19158

2018

欧洲人群

男性和女性

11,059

450,325

ukb-b-13891

2018

欧洲人群

男性和女性

18,826

442,558

2.2. 工具变量条件

选取矿物质摄入相关的SNP作为潜在的工具变量,工具变量的选取条件如下:(1) 全基因组显著性p < 5e−5;(2) 以欧洲1000个基因组计划样本数据作为参考面板,计算SNP之间的连锁不平衡(LD),其中r2< 0.001,clump size为10,000 kb;(3) 强工具变量F > 10,(4) 去除效应等位基因频率(effect allele frequency, EAF) ≤ 0.01的SNP。

2.3. 数据分析

采用R语言(R version 4.3.0版本)进行MR分析、基因多效性分析和敏感性分析,分析过程中使用“Two Sample MR”包。逆方差加权法(Inverse variance weighted, IVW)结合每个SNP以获得补充剂的摄入对牙齿发育影响的总体估计,设定P < 0.05表示因果关系,将进行如下的一致性检验和基因多效性分析。

使用IVW分析法和MR Egger回归进行异质性分析,P > 0.05则认为纳入的工具变量没有异质性,可以忽略异质性对因果关系的影响。

采用Egger回归分析基因多效性产生的偏倚,其中回归截距用以分析水平多效性,P > 0.05说明不存在水平多效性。如果IVW P < 0.05,加之不存在水平多效性,说明结果没有偏差。

利用leave-one-out法进行敏感性分析,即对IVW法中P < 0.05,且通过异质性分析和基因多效性分析的变量,逐一去除各个相关的SNP,并计算剩余SNP的合并效应,如IVW法合并值相近,则认为无特定SNP对分析结果产生影响。

同样条件和方法计算结局与暴露的反向MR结果,以判断因果关系是否为单向,并进行异质性分析和基因多效性分析。

3. 结果

在补充剂摄入与先天缺牙的因果关联分析中,钙、鱼油、葡萄糖胺、铁、硒和锌等可作为暴露因素候选集。只有铁补充剂的IVW结果表明P < 0.05,OR值为3.9E−07,95%的置信区间为4.7E−12~3.2E−02,P = 0.011 ( 表2 ),表明铁补充剂是个保护因素,其他几种补充剂的IVW均P > 0.05,表明与先天缺牙没有因果关系。

<xref></xref>Table 2. IVW calculated causal relationship between supplement intake and congenital teeth agenesisTable 2. IVW calculated causal relationship between supplement intake and congenital teeth agenesis 表2. IVW计算补充剂摄入与先天缺牙的因果关系

暴露因素

SNP数量

OR

95% CI下限

95% CI上限

P值

121

3.1E+00

5.1E−03

1.9E+03

0.727

鱼油

157

2.0E−01

9.0E−03

4.6E+00

0.318

葡萄糖胺

180

1.7E−01

4.9E−03

5.7E+00

0.319

84

3.9E−07

4.7E−12

3.2E−02

0.011

77

7.1E−06

6.7E−12

7.5E+00

0.094

95

4.0E+00

2.7E−04

5.8E+04

0.777

IVW和MR Egger回归显示P > 0.05,表明结果没有异质性( 表3 );Egger回归分析基因多效性,所得P > 0.05,说明没有多效性( 表4 ),结果不存在偏倚。

<xref></xref>Table 3. The method of MR Egger and IVW to calculate heterogeneityTable 3. The method of MR Egger and IVW to calculate heterogeneity 表3. MR Egger和IVW的方法计算异质性

暴露因素

计算方法

Q

Q_df

P值

MR Egger

101.07

119

0.882

IVW

102.68

120

0.871

鱼油

MR Egger

152.33

155

0.546

IVW

152.33

156

0.568

葡萄糖胺

MR Egger

186.81

178

0.310

IVW

186.99

179

0.326

MR Egger

58.24

82

0.978

IVW

58.30

83

0.982

MR Egger

75.32

75

0.468

IVW

76.08

76

0.476

MR Egger

77.31

93

0.880

IVW

77.70

94

0.888

None of the above

MR Egger

180.41

191

0.698

IVW

180.97

192

0.705

<xref></xref>Table 4. Egger intercept method to assess pleiotropyTable 4. Egger intercept method to assess pleiotropy 表4. Egger截距方法评估多效性

暴露因素

Egger截距

SE

P值

−0.03

0.03

0.207

鱼油

0.00

0.03

0.951

葡萄糖胺

−0.01

0.02

0.681

−0.01

0.04

0.803

续表

−0.04

0.04

0.385

−0.02

0.03

0.536

表5 对补充剂摄入和先天缺牙进行反向MR,所得结果先天缺牙与钙、鱼油、葡萄糖胺、铁、硒和锌等补充剂摄入没有因果关系(P > 0.05)。

<xref></xref>Table 5. Reverse MR results for IVW assessment of exposure and outcomesTable 5. Reverse MR results for IVW assessment of exposure and outcomes 表5. IVW评价暴露和结局的反向MR结果

结局

SNP数量

OR

95% CI下限

95% CI上限

P值

47

1.0001

0.9997

1.0005

0.668

鱼油

47

1.0000

0.9992

1.0007

0.945

葡萄糖胺

47

1.0000

0.9994

1.0007

0.911

34

1.0000

0.9997

1.0003

0.821

29

1.0002

0.9999

1.0005

0.251

36

1.0000

0.9996

1.0003

0.803

None of the above

47

1.0000

0.9992

1.0008

0.977

Leave-one-out法对因果效应进行敏感性分析,逐个剔除SNP,所得效应值与IVW的合并值相近( 图1(A)~(B) ),这说明剔除任一SNP不会对分析结果产生显著影响,说明MR分析结果稳定可靠。5种分析方法的异质性检验表明,该分析不存在异质性( 图2(A)~(B) )。

(A) (B)--Figure 1. Beta value of SNP on outcome. (A) Beta value of the impact of a single SNP on outcome; (B) Beta value obtained by leave-one-out method-- (A) (B)--Figure 2. (A) Linear relationship between exposure and outcome calculated by 5 sensitivity analysis methods (B) Scatter plot of heterogeneity analysis--
4. 讨论

本研究采用孟德尔随机化探讨补充剂摄入与先天缺牙的因果关系。结果表明,铁补充剂摄入与先天缺牙存在因果关系,且摄入铁补充剂是先天缺牙的保护因素。另外,其他几种补充剂的摄入,如钙、鱼油、葡萄糖胺、硒和锌等与先天缺牙没有因果关系。

牙齿的发育需要蛋白质、维生素及矿物质(如钙、磷、镁、氟)。维生素C缺乏可导致先天缺牙、牙槽骨萎缩、牙龈容易出血、牙龈水肿等情况 [7] - [9] 。维生素A缺乏可导致牙齿生长延迟、牙齿发育不良 [10] 。体内缺氟时,牙齿容易发生龋齿,而缺钙容易发生牙齿稀疏,并且牙缝超过齿宽等 [11] 。另外,钙 [12] 、鱼油 [13] 、葡萄糖胺 [14] 、硒 [15] 和锌 [16] 等摄入或摄入不足也被报道与牙齿发育不全或发育异常有关。这些结论的得出多基于回顾性分析,包括病例对照和横断面研究。但回顾性研究难以均衡多种混杂因素,导致证据级别不够高。此外,研究样本量多有限,且纳入群体并不能反映整个人群,有一定的倾向性。本研究选用GWAS数据库,样本量大,且无性别倾向 [17]

本文的优点主要在于:1) 孟德尔随机化模型控制了混杂因素(confounding factors),及逆向因果关系的影响,在观察性结果的基础上进行可靠且准确的因果效应评估。2) 该随机化模型所采用的GWAS数据集,样本量大,更能提高检验效能和结果的可靠性。3) 本文采用双向孟德尔随机化,较单向的孟德尔随机化更为合理、科学。证明了摄入铁补充剂是先天缺牙的保护因素。

我们的研究也同时存在一定的局限性。本研究所得数据均源自GWAS数据库,来源于欧洲人群,尚未在不同人种之间开展。再者,尽管我们采用最大规模的数据,但后续研究仍需要进一步扩大样本量,以便获得更准确的因果关系评估。

综上所述,对于欧洲人群,孟德尔随机化分析结果表明摄入铁补充剂与先天缺牙存在因果关联,并且摄入铁补充剂是先天缺牙的保护因素。而钙、鱼油、葡萄糖胺、硒和锌等的摄入与先天缺牙没有因果关系。

基金项目

中国牙病防治基金会(爱笑少年A2021-056)。

References Xu, J., Mao, Z., Jia, Y., Qi, H., Qiu, T., Mao, F. and Hu, M. (2023) A Heterozygous Mutation of WNT10A Gene Caused Congenital Hypodontia and Anterior Crossbite. Chinese Journal of Stomatology, 58, 186-189. Thesleff, I. (2000) Genetic Basis of Tooth Development and Dental Defects. Acta Odontologica Scandinavica, 58, 191-194. >https://doi.org/10.1080/000163500750051728 陈雪, 黎远皋. 家族性非综合征型先天缺牙2例[J]. 华西口腔医学杂志, 2022, 40(4): 483-488. Davies, N.M., Holmes, M.V. and Davey Smith, G. (2018) Reading Mendelian Randomisation Studies: A Guide, Glossary, and Checklist for Clinicians. BMJ, 362, k601. >https://doi.org/10.1136/bmj.k601 Burgess, S. and Thompson, S.G. (2015) Mendelian Randomization: Methods for Using Genetic Variants in Causal Estimation. CRC Press. Czesnikiewicz-Guzik, M., Osmenda, G., Siedlinski, M., Nosalski, R., Pelka, P., Nowakowski, D., et al. (2019) Causal Association between Periodontitis and Hypertension: Evidence from Mendelian Randomization and a Randomized Controlled Trial of Non-Surgical Periodontal Therapy. European Heart Journal, 40, 3459-3470. >https://doi.org/10.1093/eurheartj/ehz646 Chapple, I.L.C., Bouchard, P., Cagetti, M.G., Campus, G., Carra, M., Cocco, F., et al. (2017) Interaction of Lifestyle, Behaviour or Systemic Diseases with Dental Caries and Periodontal Diseases: Consensus Report of Group 2 of the Joint EFP/ORCA Workshop on the Boundaries between Caries and Periodontal Diseases. Journal of Clinical Periodontology, 44, S39-S51. >https://doi.org/10.1111/jcpe.12685 Leggott, P.J., Robertson, P.B., Jacob, R.A., Zambon, J.J., Walsh, M. and Armitage, G.C. (1991) Effects of Ascorbic Acid Depletion and Supplementation on Periodontal Health and Subgingival Microflora in Humans. Journal of Dental Research, 70, 1531-1536. >https://doi.org/10.1177/00220345910700121101 Amaliya, A., Laine, M.L., Delanghe, J.R., Loos, B.G., Van Wijk, A.J. and Van der Velden, U. (2015) Java Project on Periodontal Diseases: Periodontal Bone Loss in Relation to Environmental and Systemic Conditions. Journal of Clinical Periodontology, 42, 325-332. >https://doi.org/10.1111/jcpe.12381 Gutierrez Gossweiler, A. and Martinez-Mier, E.A. (2019) Chapter 6: Vitamins and Oral Health. In: Zohoori, F.V., Duckworth, R.M., Zohoori, V. and Duckworth, R., Eds., Monographs in Oral Science, S. Karger AG, 59-67. >https://doi.org/10.1159/000455372 Medjedovic, E., Medjedovic, S., Deljo, D. and Sukalo, A. (2015) Impact of Fluoride on Dental Health Quality. Materia Socio Medica, 27, 395-398. Adegboye, A.R., Christensen, L.B., Holm-Pedersen, P., Avlund, K., Boucher, B.J. and Heitmann, B.L. (2013) Intakes of Calcium, Vitamin D, and Dairy Servings and Dental Plaque in Older Danish Adults. Nutrition Journal, 12, Article No. 61. >https://doi.org/10.1186/1475-2891-12-61 Hamazaki, K., Itomura, M., Sawazaki, S. and Hamazaki, T. (2006) Fish Oil Reduces Tooth Loss Mainly through Its Anti-Inflammatory Effects? Medical Hypotheses, 67, 868-870. >https://doi.org/10.1016/j.mehy.2005.11.048 Kaida, K., Yamashita, H., Toda, K. and Hayashi, Y. (2014) Suppressive Effects of D-Glucosamine on the 5-HT Sensitive Nociceptive Units in the Rat Tooth Pulpal Nerve. BioMed Research International, 2014, Article 187989. >https://doi.org/10.1155/2014/187989 Pärkö, A. (1992) Has the Increase in Selenium Intake Led to a Decrease in Caries among Children and the Young in Finland. Suomen Hammaslääkäriseuran Toimituksia, 88, 57-59. Uwitonze, A.M., Ojeh, N., Murererehe, J., Atfi, A. and Razzaque, M.S. (2020) Zinc Adequacy Is Essential for the Maintenance of Optimal Oral Health. Nutrients, 12, Article 949. >https://doi.org/10.3390/nu12040949 Beck, T., Shorter, T. and Brookes, A.J. (2019) GWAS Central: A Comprehensive Resource for the Discovery and Comparison of Genotype and Phenotype Data from Genome-Wide Association Studies. Nucleic Acids Research, 48, D933-D940. >https://doi.org/10.1093/nar/gkz895
Baidu
map