pi Pharmacy Information 2160-441X 2160-4452 beplay体育官网网页版等您来挑战! 10.12677/pi.2024.134041 pi-91538 Articles 医药卫生 血管活性肽在自身免疫性疾病发生发展中的参与及作用
The Involvement and Role of Vasoactive Peptides in the Occurrence and Development of Autoimmune Diseases
李佳琳 中国药科大学中药学院中药药理与中医药学系,江苏 南京 05 07 2024 13 04 355 361 4 6 :2024 8 6 :2024 8 7 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 血管活性肠肽(vasoactive intestinal peptide, VIP)是一种主要存在于中枢神经系统和肠道神经系统的神经递质,在肠道神经系统主要由肠神经元释放,既是一种胃肠激素,又是一种具有多种功能的神经肽。VIP对多种自身免疫性疾病具有治疗潜力,包括类风湿性关节炎、炎症性肠病和干燥综合征等。本文总结VIP在多种自身免疫性疾病发生发展中的参与及作用,为上述疾病的治疗提供新思路。
Vasoactive intestinal peptide (VIP) is a neurotransmitter primarily found in the central nervous system and the enteric nervous system. In the enteric nervous system, it is predominantly released by enteric neurons. It serves as both a gastrointestinal hormone and a neuropeptide with various functions. VIP holds therapeutic potential for several autoimmune diseases, including rheumatoid arthritis, inflammatory bowel disease, and Sjögren’s syndrome. This article summarizes the involvement and effects of VIP in the occurrence and development of multiple autoimmune diseases, providing new insights for the treatment of the aforementioned conditions.
血管活性肠肽,自身免疫性疾病,作用机制
Vasoactive Intestinal Peptide
Autoimmune Diseases Mechanism of Action
1. 引言 - beplay安卓登录

1969年,人们首次发现在哺乳动物肺部存在一种具有血管扩张能力的肽类物质,并从猪的十二指肠组织中成功分离出这种多肽,因可以扩张血管,将其命名为血管活性肠肽(Vasoactive intestinal peptide, VIP) [1] 。VIP是一种由28个氨基酸组成的多肽,主要与三种受体结合,分别为VIP受体1 (VPAC1)、VIP受体2 (VPAC2)和PACAP受体1 (PACAPR1),广泛存在于中枢神经系统和胃肠道神经系统 [2]

自身免疫性疾病是指机体的免疫系统错误地攻击和破坏正常组织和器官,导致炎症和组织损伤的一类疾病。多种神经肽在自身免疫性疾病的发生发展中具有重要作用。生长抑素(Somatostatin, SOM)可抑制类风湿性关节炎(Rheumatoid arthritis, RA)发展,临床研究表明SOM类似物奥曲肽可明显改善类风湿性关节炎患者的临床症状 [3] ;皮质抑素(Cortistatin, CST)可显著改善2,4,6-三硝基苯磺酸溶液(2, 4, 6-trinitrobenzenesulfonic acid solution, TNBS)诱导的结肠炎小鼠的疾病症状 [4] ;神经肽Y (Neuropeptide Y, NPY)RA患者滑膜中NPY水平降低,并且与关节炎疾病严重程度呈负相关;同时NPY还可以发挥抗炎作用并参与固有免疫和适应性免疫调节 [5] 。本文总结VIP在自身免疫性疾病发生发展中的表达变化以及其对疾病的改善作用。

2. VIP在自身免疫性疾病发生发展中的参与及作用 2.1. 类风湿性关节炎

RA是一种慢性炎症性自身免疫疾病。主要病理特征为关节滑膜的慢性炎症、血管翳形成和软骨破坏,最终导致不可逆的关节强直畸形和功能丧失 [6] 。临床表现为对称性、持续性的关节肿痛、畸形,伴有晨僵、乏力,并累及全身多器官 [7]

早期RA患者血清中VIP水平很低,且血清VIP水平与疾病严重程度呈负相关,提示VIP可作为早期RA患者的预后指标,即患者血清中VIP水平越低,预后越差 [8] 。在RA动物模型的研究中,胶原诱导的关节炎(collagen-induced arthritis, CIA)模型与人类RA的病情发展和临床表现相似,是目前公认的RA最佳模型 [9]

CIA小鼠腹腔注射VIP能够降低关节炎的发生率,减轻关节组织中炎性细胞浸润和软骨破坏,降低血清中IFN-γ水平,升高IL-4水平 [10] 。类似地,VIP降低CIA大鼠踝关节炎性细胞浸润,减轻骨损伤和骨破坏,降低血清中TNF-α和IL-2水平,升高IL-4水平 [11]

VIP可显著抑制TNF-α诱导的RA患者滑膜组织成纤维细胞IL-6表达 [12] ,抑制RA患者外周血淋巴细胞中TNF-α和IL-6细胞因子表达,下调CXCL8和CCL2趋化因子的表达 [13] 。此外,VIP能够使RA患者滑膜中巨噬细胞从促炎表型转为抗炎表型 [14] 。VIP还可抑制CIA小鼠骨髓来源的破骨细胞的增殖,调节CIA小鼠脾脏淋巴细胞中Treg/Th17细胞平衡,减轻踝关节骨损伤和骨破坏 [15]

RA患者血清中VIP水平与疾病发展密切相关,VIP可改善RA的疾病症状,其机制与抑制促炎因子的释放和调节T细胞平衡有关。

2.2. 炎症性肠病

炎症性肠病(inflammatory bowel disease, IBD)是一种非特异性的慢性肠道炎性疾病,主要包括溃疡性结肠炎(ulcerative colitis, UC)和克罗恩病(crohn′s disease, CD)。UC是一种主要累及直肠、结肠黏膜及黏膜下层的慢性炎症性疾病,CD的病变部位可累及全消化道,一般呈节段性分布,病程多反复发作,迁延不愈,主要临床表现为腹痛、腹泻、肠梗阻,可伴有发热、营养障碍等肠外症状 [16]

IBD患者的肠道中含VIP的神经纤维丰度与健康人群相比明显降低,且神经纤维丰度下降的变化与疾病的严重程度呈正相关 [17] 。与健康人群相比,IBD患者血清中VIP含量也明显降低 [18]

在葡聚糖硫酸钠(dextran sulfate sodium salt, DSS)诱导的小鼠结肠炎模型中,VIP敲除小鼠比野生型小鼠的疾病症状更严重,补充VIP后减轻小鼠疾病症状。此外,VIP还能维持结肠上皮屏障结构,促进结肠炎期间的上皮屏障修复,维持肠屏障稳态 [19] 。在TNBS诱导的小鼠结肠炎模型中,腹腔注射VIP可显著改善小鼠体重减轻、腹泻以及肠道炎性细胞浸润等疾病症状,降低结肠组织髓过氧化物酶活性,下调GPR35受体表达,减少中性粒细胞募集。此外,VIP能够降低TNBS诱导的结肠炎小鼠肠系膜淋巴结中 IL-17 mRNA表达,促进Foxp3和IL-10 mRNA表达,调节Th17/Treg细胞平衡 [20] 。VIP在其他结肠炎模型中也表现出对疾病的改善作用,例如啮齿类枸橼酸杆菌诱导的结肠炎 [21] 。从TNBS诱导的结肠炎小鼠的脾脏组织中分离原代淋巴细胞和固有层免疫细胞,VIP降低细胞中细胞因子IFN-γ和TNF-α水平,上调IL-4和IL-10水平,调节Th1/Th2细胞平衡 [22]

IBD患者肠道中VIP的神经纤维丰度和血清中VIP水平较健康志愿者相比明显降低,VIP敲除小鼠表现出疾病加重。VIP对多种动物模型均有改善作用,其机制与维持肠屏障稳态、抑制促炎因子释放和调节T细胞平衡有关。

2.3. 干燥综合征

干燥综合征(sjogren’s syndrom, SS)是一种累及唾液腺、泪腺等外分泌腺和其他器官的慢性炎症性自身免疫性疾病,临床表现除有唾液腺和泪腺受损功能下降而出现口干、眼干外,尚有多系统损害的症状 [23]

与健康人群相比,SS患者在唾液腺泡和唾液管中含VIP的神经纤维缺失,且在患者唾液萎缩腺泡中VIP的结合位点消失 [24] 。因其病理机制尚不明确,多种动物模型被用来研究SS的病理过程。其中非肥胖糖尿病(non-obese diabetes, NOD)小鼠模型被认为是目前比较贴合SS的动物模型 [25] 。与正常小鼠相比,NOD小鼠下颌下腺中VIP的表达降低,且与疾病严重程度呈正相关 [26] 。对NOD小鼠腹腔注射VIP能够降低外分泌腺中IL-17A的水平,改善外分泌腺的病变并恢复腺体的分泌功能 [27] 。在NOD小鼠下颌下腺滴注编码人VIP转基因的载体重组血清型2腺相关病毒后,下颌下腺和血清中VIP表达增加,唾液流速升高,疾病症状得到明显改善 [28] 。此外,对NOD小鼠腹腔注射VIP后,小鼠下颌下腺淋巴细胞浸润明显减轻,饮水量减少。从NOD小鼠的脾脏组织中分离原代淋巴细胞,外源给予VIP后使Treg细胞比例增加,Th17细胞比例减少 [29]

与健康志愿者相比,SS患者表现出病灶处神经纤维缺失。VIP可以显著改善NOD小鼠疾病症状,其机制与抑制促炎细胞因子释放、减轻炎性细胞浸润和T细胞平衡有关。

2.4. 多发性硬化症

多发性硬化症(multiple sclerosis, MS)是一种中枢神经系统慢性炎性脱髓鞘性疾病,免疫系统在疾病的发生发展中具有重要作用。神经纤维外包裹有髓鞘,免疫系统错误地攻击髓鞘,导致神经功能受损,影响神经信号的正常传递,出现疾病症状。MS常累及大脑、脊髓白质、皮质下结构、脑干、小脑和视神经,如果不进行及时有效的治疗,最终可导致患者肌肉协调性丧失,视功能丧失 [30]

MS患者血清中VIP水平较健康人群明显降低 [31] ,且脑脊液中VIP水平与健康人群相比同样呈降低的趋势 [32] 。MOG是一种只存在于髓鞘膜和髓磷脂少突胶质细胞表面的糖蛋白,属于免疫球蛋白超家族,具有免疫源性高、可诱导产生抗MOG T淋巴细胞等特点。MOG可诱发复发、实验性自身免疫性脑脊髓炎(experimental autoimmune encephalomyelitis, EAE)。使用同种异体间充质干细胞(MSCs)为载体,将VIP输送到EAE小鼠的中枢神经系统,可通过改善炎症、减轻外周T细胞对MOG的反应和提高脱髓鞘与神经元的完整性改善疾病症状,并阻止疾病发展 [33] 。此外,对EAE小鼠腹腔注射VIP可增加神经系统Treg细胞比例,抑制Th17细胞活化,降低IFN-γ、IL-6和IL-2等细胞因子以及RANTES、MCP-1和MIP-1α等趋化因子表达 [34]

MS患者血清中VIP水平降低,VIP可显著改善EAE小鼠疾病症状,其机制与抑制促炎细胞因子释放和调节T细胞平衡有关。

2.5. 其他

I型糖尿病(type 1 diabetes mellitus, T1DM)是一种由T细胞介导的自身免疫性疾病,免疫系统错误的攻击胰腺中产生胰岛素的细胞,导致胰岛素缺乏,引起血糖升高 [35] 。在NOD小鼠模型中,VIP抑制NOD小鼠血清中促炎因子释放,减轻胰腺中β细胞损伤 [36] ,VIP敲除小鼠血浆中葡萄糖水平升高 [37] 。过表达NOD小鼠的VIP基因后,胰腺β细胞中胰岛素分泌增加,NOD小鼠的葡萄糖耐受不良得到改善 [38] 。系统性红斑狼疮(systemic lupus erythematosus, SLE)是一种多发于青年女性的累及多脏器的自身免疫性炎症性结缔组织疾病 [39] 。VIP能够显著降低模型小鼠外周血和脾脏组织淋巴细胞中IL-17和IL-6的mRNA和蛋白水平,上调Foxp3和IL-10的mRNA和蛋白水平,抑制Th17细胞分化,促进Treg细胞的生成,从而恢复Th17/Treg细胞平衡,改善小鼠疾病症状 [40]

3. 总结与展望

VIP的商品名为Aviptadil,已在临床上成功用于肺动脉高压和结节病的治疗。然而,VIP在临床中发挥的治疗作用远远不及预期。主要原因包括:1) 靶向性差,能够与不同的GCPR结合,易引起不良反应;2) 易被蛋白酶降解 [41] 。针对VIP临床应用存在的问题,已经提出一些针对性策略,包括:1) 使用金属纳米颗粒作为VIP的载体,加强VIP的靶向性 [42] ;2) 使用修饰过的脂质体或纳米胶束与VIP结合,减少其在体内的降解 [43] ;3) 开发稳定的VPAC1和VPAC2受体类似物,如LBT-3627 [44]

VIP或其受体的差异表达体现在许多自身免疫性疾病的发病进程中。在早期RA患者和活动期RA患者的外周血单核细胞(PBMC)中,VPAC1表达降低 [45] ,VPAC2在MS患者活化的CD4 + T细胞中表达降低 [46] 。VIP能否作为自身免疫性疾病的生物标志物,靶向VIP或其受体能否有效防止相关疾病值得深入研究。

NOTES

*通讯作者。

Baidu
map
References Simon, R.A., Barazanji, N., Jones, M.P., Bednarska, O., Icenhour, A., Engström, M., et al. (2021) Vasoactive Intestinal Polypeptide Plasma Levels Associated with Affective Symptoms and Brain Structure and Function in Healthy Females. Scientific Reports, 11, Article No. 1406. >https://doi.org/10.1038/s41598-020-80873-2 Myers-Joseph, D., Wilmes, K.A., Fernandez-Otero, M., Clopath, C. and Khan, A.G. (2024) Disinhibition by VIP Interneurons Is Orthogonal to Cross-Modal Attentional Modulation in Primary Visual Cortex. Neuron, 112, 628-645.E7. >https://doi.org/10.1016/j.neuron.2023.11.006 Paran, D., Elkayam, O., Mayo, A., et al. (2001) A Pilot Study of a Long Acting Somatostatin Analogue for the Treatment of Refractory Rheumatoid Arthritis. Annals of the Rheumatic Diseases, 60, 888-891. Gonzalez-Rey, E., Varela, N., Sheibanie, A.F., Chorny, A., Ganea, D. and Delgado, M. (2006) Cortistatin, an Antiinflammatory Peptide with Therapeutic Action in Inflammatory Bowel Disease. Proceedings of the National Academy of Sciences of the United States of America, 103, 4228-4233. >https://doi.org/10.1073/pnas.0508997103 Chandrasekharan, B., Nezami, B.G. and Srinivasan, S. (2013) Emerging Neuropeptide Targets in Inflammation: NPY and VIP. American Journal of Physiology-Gastrointestinal and Liver Physiology, 304, G949-G957. >https://doi.org/10.1152/ajpgi.00493.2012 Huang, J., Fu, X., Chen, X., Li, Z., Huang, Y. and Liang, C. (2021) Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Frontiers in Immunology, 12, Article 686155. >https://doi.org/10.3389/fimmu.2021.686155 Brown, P., Pratt, A.G. and Hyrich, K.L. (2024) Therapeutic Advances in Rheumatoid Arthritis. BMJ, 384, e070856. >https://doi.org/10.1136/bmj-2022-070856 Martínez, C., Ortiz, A.M., Juarranz, Y., Lamana, A., Seoane, I.V., Leceta, J., et al. (2014) Serum Levels of Vasoactive Intestinal Peptide as a Prognostic Marker in Early Arthritis. PLOS ONE, 9, e85248. >https://doi.org/10.1371/journal.pone.0085248 Šteigerová, M., Šíma, M. and Slanař, O. (2023) Pathogenesis of Collagen-Induced Arthritis: Role of Immune Cells with Associated Cytokines and Antibodies, Comparison with Rheumatoid Arthritis. Folia Biologica, 69, 41-49. >https://doi.org/10.14712/fb2023069020041 Delgado, M., Abad, C., Martinez, C., Leceta, J. and Gomariz, R.P. (2001) Vasoactive Intestinal Peptide Prevents Experimental Arthritis by Downregulating Both Autoimmune and Inflammatory Components of the Disease. Nature Medicine, 7, 563-568. >https://doi.org/10.1038/87887 Juarranz, Y., Abad, C., Martinez, C., et al. (2005) Protective Effect of Vasoactive Intestinal Peptide on Bone Destruction in the Collagen-Induced Arthritis Model of Rheumatoid Arthritis. Arthritis Research&Therapy, 7, R1034-R1045. Juarranz, M.G. (2004) Vasoactive Intestinal Peptide Modulates Proinflammatory Mediator Synthesis in Osteoarthritic and Rheumatoid Synovial Cells. Rheumatology, 43, 416-422. >https://doi.org/10.1093/rheumatology/keh061 Gutiérrez-Cañas, I., Juarranz, Y., Santiago, B., Martínez, C., Gomariz, R.P., Pablos, J.L., et al. (2008) Immunoregulatory Properties of Vasoactive Intestinal Peptide in Human T Cell Subsets: Implications for Rheumatoid Arthritis. Brain, Behavior, and Immunity, 22, 312-317. >https://doi.org/10.1016/j.bbi.2007.09.007 Carrión, M., Pérez-García, S., Martínez, C., Juarranz, Y., Estrada-Capetillo, L., Puig-Kröger, A., et al. (2016) VIP Impairs Acquisition of the Macrophage Proinflammatory Polarization Profile. Journal of Leukocyte Biology, 100, 1385-1393. >https://doi.org/10.1189/jlb.3a0116-032rr Muschter, D., Schäfer, N., Stangl, H., Straub, R.H. and Grässel, S. (2015) Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis. PLOS ONE, 10, e0139726. >https://doi.org/10.1371/journal.pone.0139726 Gilliland, A., Chan, J.J., De Wolfe, T.J., Yang, H. and Vallance, B.A. (2024) Pathobionts in Inflammatory Bowel Disease: Origins, Underlying Mechanisms, and Implications for Clinical Care. Gastroenterology, 166, 44-58. >https://doi.org/10.1053/j.gastro.2023.09.019 Kubota, Y., Petras, R.E., Ottaway, C.A., Tubbs, R.R., Farmer, R.G. and Fiocchi, C. (1992) Colonic Vasoactive Intestinal Peptide Nerves in Inflammatory Bowel Disease. Gastroenterology, 102, 1242-1251. >https://doi.org/10.1016/0016-5085(92)90762-n Sun, X., Guo, C., Zhao, F., Zhu, J., Xu, Y., Liu, Z., et al. (2019) Vasoactive Intestinal Peptide Stabilizes Intestinal Immune Homeostasis through Maintaining Interleukin-10 Expression in Regulatory B Cells. Theranostics, 9, 2800-2811. >https://doi.org/10.7150/thno.34414 Wu, X., Conlin, V.S., Morampudi, V., Ryz, N.R., Nasser, Y., Bhinder, G., et al. (2015) Vasoactive Intestinal Polypeptide Promotes Intestinal Barrier Homeostasis and Protection against Colitis in Mice. PLOS ONE, 10, e0125225. >https://doi.org/10.1371/journal.pone.0125225 Abad, C., Martinez, C., Juarranz, M.G., Arranz, A., Leceta, J., Delgado, M., et al. (2003) Therapeutic Effects of Vasoactive Intestinal Peptide in the Trinitrobenzene Sulfonic Acid Mice Model of Crohn’s Disease. Gastroenterology, 124, 961-971. >https://doi.org/10.1053/gast.2003.50141 Conlin, V.S., Wu, X., Nguyen, C., Dai, C., Vallance, B.A., Buchan, A.M.J., et al. (2009) Vasoactive Intestinal Peptide Ameliorates Intestinal Barrier Disruption Associated with Citrobacter rodentium-Induced Colitis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 297, G735-G750. >https://doi.org/10.1152/ajpgi.90551.2008 Villanueva-Romero, R., Gutiérrez-Cañas, I., Carrión, M., Pérez-García, S., Seoane, I.V., Martínez, C., et al. (2018) The Anti-Inflammatory Mediator, Vasoactive Intestinal Peptide, Modulates the Differentiation and Function of Th Subsets in Rheumatoid Arthritis. Journal of Immunology Research, 2018, Article ID: 6043710. >https://doi.org/10.1155/2018/6043710 Beydon, M., McCoy, S., Nguyen, Y., Sumida, T., Mariette, X. and Seror, R. (2023) Epidemiology of Sjögren syndrome. Nature Reviews Rheumatology, 20, 158-169. >https://doi.org/10.1038/s41584-023-01057-6 Törnwall, J., Uusitalo, H., Hukkanen, M., et al. (1994) Distribution of Vasoactive Intestinal Peptide (VIP) and Its Binding Sites in Labial Salivary Glands in Sjögren’s Syndrome and in Normal Controls. Clinical and Experimental Rheumatology, 12, 287-292. Cha, S., Peck, A.B. and Humphreys-Beher, M.G. (2002) Progress in Understanding Autoimmune Exocrinopathy Using The Non-Obese Diabetic Mouse: An Update. Critical Reviews in Oral Biology&Medicine, 13, 5-16. >https://doi.org/10.1177/154411130201300103 Groneberg, D.A., Springer, J. and Fischer, A. (2001) Vasoactive Intestinal Polypeptide as Mediator of Asthma. Pulmonary Pharmacology&Therapeutics, 14, 391-401. >https://doi.org/10.1006/pupt.2001.0306 Li, C., Zhu, F., Wu, B. and Wang, Y. (2017) Vasoactive Intestinal Peptide Protects Salivary Glands against Structural Injury and Secretory Dysfunction via IL-17A and AQP5 Regulation in a Model of Sjögren Syndrome. Neuroimmunomodulation, 24, 300-309. >https://doi.org/10.1159/000486859 Lodde, B.M. (2006) Effect of Human Vasoactive Intestinal Peptide Gene Transfer in a Murine Model of Sjogren’s Syndrome. Annals of the Rheumatic Diseases, 65, 195-200. >https://doi.org/10.1136/ard.2005.038232 Li, Y., Zhu, W., Lin, R., Zhao, J. and Wang, Y. (2023) Vasoactive Intestinal Peptide Exerts Therapeutic Action by Regulating PTEN in a Model of Sjögren’s Disease. Immunity, Inflammation and Disease, 11, e936. >https://doi.org/10.1002/iid3.936 Jakimovski, D., Bittner, S., Zivadinov, R., Morrow, S.A., Benedict, R.H., Zipp, F., et al. (2024) Multiple Sclerosis. The Lancet, 403, 183-202. >https://doi.org/10.1016/s0140-6736(23)01473-3 Al-Keilani, M.S., Almomani, B.A., Al-Sawalha, N.A., Al Qawasmeh, M. and Jaradat, S.A. (2021) Significance of Serum VIP and PACAP in Multiple Sclerosis: An Exploratory Case-Control Study. Neurological Sciences, 43, 2621-2630. >https://doi.org/10.1007/s10072-021-05682-5 Baranowska-Bik, A., Kochanowski, J., Uchman, D., Wolinska-Witort, E., Kalisz, M., Martynska, L., et al. (2013) Vasoactive Intestinal Peptide (VIP) and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) in Humans with Multiple Sclerosis. Journal of Neuroimmunology, 263, 159-161. >https://doi.org/10.1016/j.jneuroim.2013.08.012 Cobo, M., Anderson, P., Benabdellah, K., Toscano, M.G., Muñoz, P., García-Pérez, A., et al. (2013) Mesenchymal Stem Cells Expressing Vasoactive Intestinal Peptide Ameliorate Symptoms in a Model of Chronic Multiple Sclerosis. Cell Transplantation, 22, 839-854. >https://doi.org/10.3727/096368912x657404 Fernandez‐Martin, A., Gonzalez‐Rey, E., Chorny, A., Ganea, D. and Delgado, M. (2006) Vasoactive Intestinal Peptide Induces Regulatory T Cells during Experimental Autoimmune Encephalomyelitis. European Journal of Immunology, 36, 318-326. >https://doi.org/10.1002/eji.200535430 Rapaport, R. (2024) Type 1 Diabetes. Endocrinology and Metabolism Clinics of North America, 53, xv-xvi. >https://doi.org/10.1016/j.ecl.2023.11.002 Jimeno, R., Gomariz, R.P., Gutiérrez‐Cañas, I., Martínez, C., Juarranz, Y. and Leceta, J. (2010) New Insights into the Role of VIP on the Ratio of T‐Cell Subsets during the Development of Autoimmune Diabetes. Immunology&Cell Biology, 88, 734-745. >https://doi.org/10.1038/icb.2010.29 Martin, B., Shin, Y., White, C.M., Ji, S., Kim, W., Carlson, O.D., et al. (2010) Vasoactive Intestinal Peptide–null Mice Demonstrate Enhanced Sweet Taste Preference, Dysglycemia, and Reduced Taste Bud Leptin Receptor Expression. Diabetes, 59, 1143-1152. >https://doi.org/10.2337/db09-0807 Kato, I., Suzuki, Y., Akabane, A., Yonekura, H., Tanaka, O., Kondo, H., et al. (1994) Transgenic Mice Overexpressing Human Vasoactive Intestinal Peptide (VIP) Gene in Pancreatic Beta Cells. Evidence for Improved Glucose Tolerance and Enhanced Insulin Secretion by VIP and PHM-27 in Vivo. Journal of Biological Chemistry, 269, 21223-21228. >https://doi.org/10.1016/s0021-9258(17)31951-8 Fanouriakis, A., Kostopoulou, M., Andersen, J., Aringer, M., Arnaud, L., Bae, S., et al. (2023) EULAR Recommendations for the Management of Systemic Lupus Erythematosus: 2023 Update. Annals of the Rheumatic Diseases, 83, 15-29. >https://doi.org/10.1136/ard-2023-224762 Fu, D., Senouthai, S., Wang, J. and You, Y. (2019) Vasoactive Intestinal Peptide Ameliorates Renal Injury in a Pristane-Induced Lupus Mouse Model by Modulating Th17/Treg Balance. BMC Nephrology, 20, Article No. 350. >https://doi.org/10.1186/s12882-019-1548-y Bloom, S.R., Polak, J. and Pearse, A.G.E. (1973) Vasoactive Intestinal Peptide and Watery-Diarrhœa Syndrome. The Lancet, 302, 14-16. >https://doi.org/10.1016/s0140-6736(73)91947-8 Fernandez-Montesinos, R., Castillo, P.M., Klippstein, R., Gonzalez-Rey, E., Mejias, J.A., Zaderenko, A.P., et al. (2009) Chemical Synthesis and Characterization of Silver-Protected Vasoactive Intestinal Peptide Nanoparticles. Nanomedicine, 4, 919-930. >https://doi.org/10.2217/nnm.09.79 Masaka, T., Li, Y., Kawatobi, S., Koide, Y., Takami, A., Yano, K., et al. (2014) Liposome Modified with VIP-Lipopeptide as a New Drug Delivery System. Yakugaku Zasshi, 134, 987-995. >https://doi.org/10.1248/yakushi.14-00019 Olson, K.E., Kosloski-Bilek, L.M., Anderson, K.M., Diggs, B.J., Clark, B.E., Gledhill, J.M., et al. (2015) Selective VIP Receptor Agonists Facilitate Immune Transformation for Dopaminergic Neuroprotection in MPTP-Intoxicated Mice. The Journal of Neuroscience, 35, 16463-16478. >https://doi.org/10.1523/jneurosci.2131-15.2015 Seoane, I.V., Ortiz, A.M., Piris, L., Lamana, A., Juarranz, Y., García-Vicuña, R., et al. (2016) Clinical Relevance of VPAC1 Receptor Expression in Early Arthritis: Association with IL-6 and Disease Activity. PLOS ONE, 11, e0149141. >https://doi.org/10.1371/journal.pone.0149141 Sun, W., Hong, J., Zang, Y.C.Q., Liu, X. and Zhang, J.Z. (2006) Altered Expression of Vasoactive Intestinal Peptide Receptors in T Lymphocytes and Aberrant Th1 Immunity in Multiple Sclerosis. International Immunology, 18, 1691-1700. >https://doi.org/10.1093/intimm/dxl103