Figure 1. Structure and orientation parameters for Ni 5 36.9˚001 grain boundary, and the block-shaped bicrystal model constructed based on this boundary--图1. Ni5 36.9˚001晶界的结构和取向参数以及所对应的块状双晶模型--
Figure 5. Shear-coupled migration behavior of 5 grain boundary at 100 K and 900 K, illustrated by the bicrystal structure at various times--图5. 在100 K和900 K时,基于不同时刻双晶结构所呈现的5晶界剪切耦合迁移行为--
References
Sutton, A.P. and Balluffi, R.W. (1995) Interfaces in Crystalline Materials. Oxford Science Publications, Oxford.
Gottstein, G. and Shvindlerman, L.S. (2011) Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications. CRC Press, Boca Raton.
Zhang, K., Weertman, J.R. and Eastman, J.A. (2005) Rapid Stress-Driven Grain Coarsening in Nanocrystalline Cu at Ambient and Cryogenic Temperatures. Applied Physics Letters, 87, Article 061921. >https://doi.org/10.1063/1.2008377
Sun, F., Zúñiga, A., Rojas, P. and Lavernia, E.J. (2006) Thermal Stability and Recrystallization of Nanocrystalline Ti Produced by Cryogenic Milling. Metallurgical and Materials Transactions A, 37, 2069-2078. >https://doi.org/10.1007/bf02586127
Brons, J.G., Padilla, H.A., Thompson, G.B. and Boyce, B.L. (2013) Cryogenic Indentation-Induced Grain Growth in Nanotwinned Copper. Scripta Materialia, 68, 781-784. >https://doi.org/10.1016/j.scriptamat.2012.12.026
Olmsted, D.L., Foiles, S.M. and Holm, E.A. (2007) Grain Boundary Interface Roughening Transition and Its Effect on Grain Boundary Mobility for Non-Faceting Boundaries. Scripta Materialia, 57, 1161-1164. >https://doi.org/10.1016/j.scriptamat.2007.07.045
Yu, T., Yang, S. and Deng, C. (2019) Survey of Grain Boundary Migration and Thermal Behavior in Ni at Low Homologous Temperatures. Acta Materialia, 177, 151-159. >https://doi.org/10.1016/j.actamat.2019.07.034
Homer, E.R., Foiles, S.M., Holm, E.A. and Olmsted, D.L. (2013) Phenomenology of Shear-Coupled Grain Boundary Motion in Symmetric Tilt and General Grain Boundaries. Acta Materialia, 61, 1048-1060. >https://doi.org/10.1016/j.actamat.2012.10.005
Winning, M., Gottstein, G. and Shvindlerman, L.S. (2001) Stress Induced Grain Boundary Motion. Acta Materialia, 49, 211-219. >https://doi.org/10.1016/s1359-6454(00)00321-9
Trautt, Z.T., Upmanyu, M. and Karma, A. (2006) Interface Mobility from Interface Random Walk. Science, 314, 632-635. >https://doi.org/10.1126/science.1131988
Janssens, K.G.F., Olmsted, D., Holm, E.A., Foiles, S.M., Plimpton, S.J. and Derlet, P.M. (2006) Computing the Mobility of Grain Boundaries. Nature Materials, 5, 124-127. >https://doi.org/10.1038/nmat1559
Yang, L. and Li, S. (2015) A Modified Synthetic Driving Force Method for Molecular Dynamics Simulation of Grain Boundary Migration. Acta Materialia, 100, 107-117. >https://doi.org/10.1016/j.actamat.2015.08.051
Plimpton, S. (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117, 1-19. >https://doi.org/10.1006/jcph.1995.1039
Foiles, S. and Hoyt, J. (2006) Computation of Grain Boundary Stiffness and Mobility from Boundary Fluctuations. Acta Materialia, 54, 3351-3357. >https://doi.org/10.1016/j.actamat.2006.03.037
Stukowski, A. (2009) Visualization and Analysis of Atomistic Simulation Data with OVITO—The Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18, Article 015012. >https://doi.org/10.1088/0965-0393/18/1/015012
Han, J., Thomas, S.L. and Srolovitz, D.J. (2018) Grain-Boundary Kinetics: A Unified Approach. Progress in Materials Science, 98, 386-476. >https://doi.org/10.1016/j.pmatsci.2018.05.004
Rahman, M.J., Zurob, H.S. and Hoyt, J.J. (2014) A Comprehensive Molecular Dynamics Study of Low-Angle Grain Boundary Mobility in a Pure Aluminum System. Acta Materialia, 74, 39-48. >https://doi.org/10.1016/j.actamat.2014.03.063
Deng, C. and Schuh, C.A. (2011) Diffusive-to-Ballistic Transition in Grain Boundary Motion Studied by Atomistic Simulations. Physical Review B, 84, Article 214102. >https://doi.org/10.1103/physrevb.84.214102