Pretreatment and Mechanism Analysis of Landfill Leachate and Reverse Osmosis Concentrated Water by Electro-Fenton-Type System
With the continuous development of urbanization, the amount of domestic waste is increasing day by day, and a large amount of landfill leachate is produced. The treatment of landfill leachate is very complicated and difficult. As a specific method for treating landfill leachate, electro-Fenton-type can remove pollutants by using the characteristics of high chloride ion concentration in landfill leachate. In this paper, Ti/RuO 2-IrO 2electrode anode and graphite felt cathode were used to construct an electro-Fenton-type system to treat raw landfill leachate water and reverse osmosis membrane concentrated water. The degradation effects of raw landfill leachate water and reverse osmosis membrane concentrated water were analyzed, and hydroxyl radical probe detection, hypochlorite determination and three-dimensional fluorescence spectrum (3DEEM) analysis were also performed. The results showed that the formation path of hydroxyl radicals in the reaction system was the reaction of Fe 2+with ClO −generated by Cl −in landfill leachate under the action of current, and the removal of 47% and 51% COD and 62% and 79% ammonia nitrogen in landfill leachate and reverse osmosis concentrated water at a lower current density (35 mA/cm 2). 3DEEM analysis showed that the main components of DOM did not change after the treatment of landfill leachate by electro-Fenton-type system, which were humic acid and fulvic acid, but the concentration of organic matter was greatly reduced. The results indicated that although the effect of COD removal in landfill leachate was poor due to the low degree of mineralization, macromolecular organic matter was decomposed into small molecules that were easy to biodegrade, which improved the biodegradability of landfill leachate. Therefore, in practical engineering applications, biological treatment can be carried out after the electro-Fenton-type reaction, so as to improve the treatment efficiency of landfill leachate.
Electro-Fenton-Type
近年来对垃圾渗滤液和反渗透浓水的工艺处理一直是国内外研究的热点问题。垃圾渗滤液是一种含有高浓度有机物和污染物的复杂废水,各种高级氧化工艺(AOPs)已被研究用于处理垃圾渗滤液,包括电芬顿和光电芬顿工艺
类电芬顿技术是近二十年来新兴的高效污染物处理技术,它是芬顿氧化的衍生技术
(1)
(2)
(3)
(4)
基于此,本文通过构建类电芬顿体系,分别处理垃圾渗滤液及反渗透浓水,对比反应前后垃圾渗滤液的水质变化,并通过自由基检测和荧光光谱分析对垃圾渗滤液的处理效果进行进一步分析。
废水来自于广东省阳江市某垃圾填埋场。其主要指标如
填埋场厂龄 |
pH |
COD (mg/L) |
NH3-N (mg/L) |
TN (mg/L) |
TP (mg/L) |
氯离子(mg/L) |
阳江新鲜渗滤液 |
8.72 |
9519 |
2261 |
2993 |
27.71 |
8563 |
阳江反渗透浓水 |
3.78 |
2667 |
120 |
371.46 |
4.36 |
9770 |
本实验所用的硫酸钠、氯化钠、硫酸、氢氧化钠、重铬酸钾、氯化银、香豆素、碘化钾、碘化汞、硫代硫酸钠、酒石酸钾钠、过硫酸钾、盐酸、醋酸和氯化铵均购于中国天津达茂化学试剂厂。
配置模拟废水,其中投加NaCl使模拟废水中Cl−浓度为5000 mg/L,在模拟废水中投加2 mmol/L的香豆素后,分别采用不加Fe2+与投加0.02 mol/L Fe2+的情况下处理5 h,在发射波长332 nm的情况下测定其荧光强度。
配置模拟废水,其中投加NaCl使模拟废水中Cl−浓度为10,000 mg/L,对模拟废水分别进行投加0.04 mol/L的Fe2+与不投加Fe2+后反应5 h,取2 ml样品加入250 ml碘量瓶中,加入50 ml水与1 g碘化钾,摇匀后加入5 ml 36%醋酸,摇匀静置5 min。用0.1 N硫代硫酸钠标准溶液滴定至淡黄色时加入5滴淀粉指示剂后继续滴定至蓝色消失。
残留率(Rt, %):各物质或指标的残留率。
式中:为各物质残留率, 为各物质的初始浓度; 为各物质在t时刻对应的浓度。
次氯酸根浓度(mg/L):
式中:C为次氯酸根浓度,C0为硫代硫酸钠标准溶液浓度,V1为滴定水样时消耗硫代硫酸钠标准溶液用量,V为水样的体积,37.221为1/2 NaClO的摩尔质量。
影响类电芬顿体系的COD降解效果的一般条件有pH、电流密度、Fe2+等。这些因素一般会影响反应体系中·OH的产生,从而影响反应体系的去除效果。因此,本文从以上条件入手,做单因素实验探讨COD降解效果。
在类电芬顿体系中,不同的pH条件可以通过影响反应体系内各组分的存在形态和反应途径,进而影响到羟基自由基的生成,从而影响COD的去除率。因此,本文分别考察pH在1、3、5、7、9时COD的去除率。
Fe2+的浓度可以影响公式((1)~(3))的进行来影响到羟基自由基的生成,进而影响到COD的去除率。因此,本文通过控制FeSO4的投加量来控制反应体系中Fe2+的浓度,研究Fe2+对COD和氨氮去除效果的影响。
氨氮也是垃圾渗滤液处理的重点问题,之前的研究表明,垃圾渗滤液中的Cl−能够与氨氮发生反应,促进氨氮的降解。因此,本文分别考察pH、Fe2+、电流密度对垃圾渗滤液中氨氮去除的影响。
荧光探针法检测羟基自由基具有较高的准确性
通过碘量法测定是否投加Fe2+对模拟废水中次氯酸根产生的影响,以此来判断反应体系中·OH的生成与ClO−有无关系。
(5)
(6)
(7)
三维荧光光谱分析是水样DOM检测中常用的分析手段
图9. 垃圾渗滤液原水(a)和反渗透浓水(c)及类电芬顿出水(原水(b)、反渗透浓水(d))的三维荧光光谱图
并没有新的峰出现,这表明并未有其他类DOM在反应后生成。两峰的荧光强度均有下降但并没有完全消失,这也表明类电芬顿体系并未能将垃圾渗滤液中的DOM全部矿化,而是将大分子物质分解成分子更小的DOM溶于水体中,这也是类电芬顿体系出水COD去除率较低的原因。
本文探究了Fe2+和HClO的类电芬顿作用,对该反应进行了条件优化并通过羟基自由基检测与次氯酸根的检测证实了类电芬顿作用的存在,并通过三维荧光光谱分析探究了垃圾渗滤液中DOM组分的变化,并得到了以下结论:
1) 类电芬顿体系在pH = 3、电流密度17.5 mA/cm2、Fe2+浓度为0.04 mol/L的条件下对垃圾渗滤液原水和反渗透浓水的COD和氨氮去除率达到了47%和51% (COD)与62%和79% (氨氮),可以对难降解的垃圾渗滤液起到预处理作用。
2) 垃圾渗滤液原水与反渗透浓水中DOM组分为富里酸与腐殖酸,经类电芬顿体系处理后,两种组分均有一定程度的降解,但都未完全去除,这说明了类电芬顿能够对垃圾渗滤液废水中大分子难降解有机物降解为小分子的有机物,但并未将其完全矿化,导致COD的去除率较低,但有利于后续进行生化处理。