注:图中不同小写字母表示不同处理间有显著性差异(P < 0.05),下图同。--Figure 1. Effects of CdCl2 on stomatal movement in wild-type A. thaliana--Figure 2. Effects of H2S synthesis inhibitors on CdCl2-triggered stomatal closure in wild-type (A) and effects of CdCl2 on stomal aperture in Atl-cdes and Atd-cdes mutants (B)--图2. H2S合成抑制剂对CdCl2诱导拟南芥野生型(Col-0)气孔关闭的影响(A)和CdCl2对Atl-cdes和Atd-cdes突变体气孔开度的效应(B)--3.3. NO参与CdCl2调控的拟南芥气孔关闭
Figure 3. Effects of H2S synthesis inhibitors on CdCl2-caused H2S synthesis (A) and L-/D-CDes activity increase of leaves in wild-type (Co1-0) ((B), (C))--图3. H2S合成抑制剂对CdCl2诱导的野生型(Co1-0)叶片H2S合成(A)和L-/D-CDes活性升高的影响((B), (C))--Figure 4. Effects of NO scavenger and synthesis inhibitors on CdCl2-triggered stomatal closure in wild-type (A) and effects of CdCl2 on stomatal movemen in Atnoa1, nia1-2, nia2-1 and nia1-2/2-5 mutants (B)--图4. NO清除剂和合成抑制剂对CdCl2诱导野生型气孔关闭的影响(A)和CdCl2对Atnoa1、nia1-2、nia2-1和nia1-2/2-5突变体气孔运动的效应(B)--注:离体表皮条按如下方法处理:(A) MES/KCl缓冲液单独处理,或含(B) 300 µmol·L−1 CdCl2、(C) 300 µmol·L−1 CdCl2 + 200 µmol·L−1 c-PTIO、(D) 300 µmol·L−1 CdCl2 + 25 µmol·L−1 L-NAME和(E) 300 µmol·L−1 CdCl2 + 100 µmol·L−1 Na2WO4的MES/KCl缓冲液;(F-I) 将撕取的Atnoa1, nia1-2, nia2-1和nia1-2/2-5突变体的表皮条分别用300 µmol·L−1 CdCl2处理3 h,然后在暗中立即用含10 µmol·L−1 DAF-2DA的Tris-KCl缓冲液孵育30 min,Tris-KCl缓冲液漂洗3~5次,去除多余染料,立即用荧光显微镜观察并拍照;(J) 为图(A)-(I)的平均DAF-2荧光强度,数据来自三个重复实验的平均值 ± 标准误差(n = 9);图(J)中不同小写字母表示不同处理间有显著性差异(P < 0.05)。--Figure 5. Effects of NO scavenger and synthesis inhibitors on CdCl2-triggered NO production of guard cells in wild-type (A)-(E) and effects of CdCl2 on NO production of guard cells in Atnoa1, nia1-2, nia2-1 and nia1-2/2-5 mutants (F)-(I)--3.4. H2S和NO在CdCl2诱导拟南芥气孔关闭中的相互关系
Figure 6. Effects of NO scavenger and synthesis inhibitors on CdCl2-induced H2S content (A) and L-/D-CDes avtivity ((B), (C)) of leaves in wild-type--图6. NO清除剂和合成抑制剂对CdCl2诱导的野生型叶片H2S含量(A)和L-/D-CDes活性的影响((B), (C))--Figure 7. Effects of CdCl2 on H2S content (A) and L-/D-CDes activity in Atnoa1, nia1-2, nia2-1 and nia1-2/nia2-5 mutants ((B), (C))--图7. CdCl2对Atnoa1、nia1-2、nia2-1和nia1-2/nia2-5突变体叶片H2S含量(A)和L-/D-CDes活性的影响((B), (C))--图7. CdCl2对Atnoa1、nia1-2、nia2-1和nia1-2/nia2-5突变体叶片H2S含量(A)和L-/D-CDes活性的影响((B), (C))Figure 7. Effects of CdCl2 on H2S content (A) and L-/D-CDes activity in Atnoa1, nia1-2, nia2-1 and nia1-2/nia2-5 mutants ((B), (C))--图7. CdCl2对Atnoa1、nia1-2、nia2-1和nia1-2/nia2-5突变体叶片H2S含量(A)和L-/D-CDes活性的影响((B), (C))--图7. CdCl2对Atnoa1、nia1-2、nia2-1和nia1-2/nia2-5突变体叶片H2S含量(A)和L-/D-CDes活性的影响((B), (C))
References
Chen, J., Wu, F., Wang, W., Zheng, C., Lin, G., Dong, X., et al. (2011) Hydrogen Sulphide Enhances Photosynthesis through Promoting Chloroplast Biogenesis, Photosynthetic Enzyme Expression, and Thiol Redox Modification in Spinacia oleracea Seedlings. Journal of Experimental Botany, 62, 4481-4493. >https://doi.org/10.1093/jxb/err145
Ma, Y., Shao, L., Zhang, W. and Zheng, F. (2021) Hydrogen Sulfide Induced by Hydrogen Peroxide Mediates Brassinosteroid-Induced Stomatal Closure of Arabidopsis thaliana. Functional Plant Biology, 48, 195-205. >https://doi.org/10.1071/fp20205
金竹萍, 王磊, 李澄, 等. H
2S信号通过调节RuBisCo增强植物抗旱性[J]. 中国细胞生物学学报, 2019, 41(10): 1918-1928.
Lai, D., Mao, Y., Zhou, H., Li, F., Wu, M., Zhang, J., et al. (2014) Endogenous Hydrogen Sulfide Enhances Salt Tolerance by Coupling the Reestablishment of Redox Homeostasis and Preventing Salt-Induced K
+Loss in Seedlings of Medicago sativa. Plant Science, 225, 117-129. >https://doi.org/10.1016/j.plantsci.2014.06.006
Shen, J., Xing, T., Yuan, H., Liu, Z., Jin, Z., Zhang, L., et al. (2013) Hydrogen Sulfide Improves Drought Tolerance in Arabidopsis thaliana by MicroRNA Expressions. PLOS ONE, 8, e77047. >https://doi.org/10.1371/journal.pone.0077047
Ali, B., Gill, R.A., Yang, S., Gill, M.B., Ali, S., Rafiq, M.T., et al. (2014) Hydrogen Sulfide Alleviates Cadmium-Induced Morpho-Physiological and Ultrastructural Changes in Brassica napus. Ecotoxicology and Environmental Safety, 110, 197-207. >https://doi.org/10.1016/j.ecoenv.2014.08.027
Hou, Z., Wang, L., Liu, J., Hou, L. and Liu, X. (2013) Hydrogen Sulfide Regulates Ethylene-Induced Stomatal Closure in Arabidopsis thaliana. Journal of Integrative Plant Biology, 55, 277-289. >https://doi.org/10.1111/jipb.12004
Ma, Y., Niu, J., Zhang, W. and Wu, X. (2018) Hydrogen Sulfide May Function Downstream of Hydrogen Peroxide in Mediating Darkness-Induced Stomatal Closure in Vicia faba. Functional Plant Biology, 45, 553-560. >https://doi.org/10.1071/fp17274
Ma, Y.L., Zhang, W. and Niu, J. (2019) Hydrogen Sulfide May Function Downstream of Hydrogen Peroxide in CdCl
2-Induced Stomatal Closure in Vigna radiata L. South African Journal of Botany, 124, 39-46. >https://doi.org/10.1016/j.sajb.2019.04.031
Ignarro, L.J. (2000) Nitric Oxide: Biology and Pathobiology. Academic Press, San Diego.
Hess, D.T., Matsumoto, A., Kim, S., Marshall, H.E. and Stamler, J.S. (2005) Protein S-Nitrosylation: Purview and Parameters. Nature Reviews Molecular Cell Biology, 6, 150-166. >https://doi.org/10.1038/nrm1569
Beligni, M.V. and Lamattina, L. (2000) Nitric Oxide Stimulates Seed Germination and De-Etiolation, and Inhibits Hypocotyl Elongation, Three Light-Inducible Responses in Plants. Planta, 210, 215-221. >https://doi.org/10.1007/pl00008128
Leshem, Y.Y., Wills, R.B.H. and Ku, V.V. (1998) Evidence for the Function of the Free Radical Gas—Nitric Oxide (NO)—As an Endogenous Maturation and Senescence Regulating Factor in Higher Plants. Plant Physiology and Biochemistry, 36, 825-833. >https://doi.org/10.1016/s0981-9428(99)80020-5
Bright, J., Desikan, R., Hancock, J.T., Weir, I.S. and Neill, S.J. (2005) ABA-Induced NO Generation and Stomatal Closure in Arabidopsis Are Dependent on H
2O
2Synthesis. The Plant Journal, 45, 113-122. >https://doi.org/10.1111/j.1365-313x.2005.02615.x
Garcia-Mata, C. and Lamattina, L. (2007) Abscisic Acid (ABA) Inhibits Light-Induced Stomatal Opening through Calcium-and Nitric Oxide-Mediated Signaling Pathways. Nitric Oxide, 17, 143-151. >https://doi.org/10.1016/j.niox.2007.08.001
Zhao, Z., Chen, G. and Zhang, C. (2001) Interaction between Reactive Oxygen Species and Nitric Oxide in Drought-Induced Abscisic Acid Synthesis in Root Tips of Wheat Seedlings. Functional Plant Biology, 28, 1055-1061. >https://doi.org/10.1071/pp00143
Campos, F.V., Oliveira, J.A., Pereira, M.G. and Farnese, F.S. (2019) Nitric Oxide and Phytohormone Interactions in the Response of Lactuca sativa to Salinity Stress. Planta, 250, 1475-1489. >https://doi.org/10.1007/s00425-019-03236-w
Rai, K.K., Pandey, N. and Rai, S.P. (2019) Salicylic Acid and Nitric Oxide Signaling in Plant Heat Stress. Physiologia Plantarum, 168, 241-255. >https://doi.org/10.1111/ppl.12958
He, J., Xu, H., She, X., Song, X. and Zhao, W. (2005) The Role and the Interrelationship of Hydrogen Peroxide and Nitric Oxide in the UV-B-Induced Stomatal Closure in Broad Bean. Functional Plant Biology, 32, 237-247. >https://doi.org/10.1071/fp04185
Shi, C., Qi, C., Ren, H., Huang, A., Hei, S. and She, X. (2015) Ethylene Mediates Brassinosteroid-Induced Stomatal Closure via Gα Protein-Activated Hydrogen Peroxide and Nitric Oxide Production in Arabidopsis. The Plant Journal, 82, 280-301. >https://doi.org/10.1111/tpj.12815
乔增杰, 王婷, 金竹萍, 等. 硫化氢参与镉诱导拟南芥气孔的关闭[J]. 山西大学学报: 自然科学版, 2016, 39(1): 146-151.
McAinsh, M.R., Clayton, H., Mansfield, T.A. and Hetherington, A.M. (1996) Changes in Stomatal Behavior and Guard Cell Cytosolic Free Calcium in Response to Oxidative Stress. Plant Physiology, 111, 1031-1042. >https://doi.org/10.1104/pp.111.4.1031
Sekiya, J., Schmidt, A., Wilson, L.G. and Filner, P. (1982) Emission of Hydrogen Sulfide by Leaf Tissue in Response to L-Cysteine. Plant Physiology, 70, 430-436. >https://doi.org/10.1104/pp.70.2.430
侯智慧, 车永梅, 王兰香, 等. H
2S位于H
2O
2下游参与乙烯诱导拟南芥气孔关闭过程[J]. 植物生理学报, 2012, 48(12): 1193-1199.
黄丽萍. H
2S在CdCl
2诱导拟南芥气孔关闭中的作用及其与H
2O
2、NO的关系[D]: [硕士学位论文]. 太原: 山西师范大学, 2023.
Riemenschneider, A., Nikiforova, V., Hoefgen, R., De Kok, L.J. and Papenbrock, J. (2005) Impact of Elevated H
2S on Metabolite Levels, Activity of Enzymes and Expression of Genes Involved in Cysteine Metabolism. Plant Physiology and Biochemistry, 43, 473-483. >https://doi.org/10.1016/j.plaphy.2005.04.001
Kojima, H., Nakatsubo, N., Kikuchi, K., Kawahara, S., Kirino, Y., Nagoshi, H., et al. (1998) Detection and Imaging of Nitric Oxide with Novel Fluorescent Indicators: Diaminofluoresceins. Analytical Chemistry, 70, 2446-2453. >https://doi.org/10.1021/ac9801723
Zhang, H., Hu, L., Hu, K., He, Y., Wang, S. and Luo, J. (2008) Hydrogen Sulfide Promotes Wheat Seed Germination and Alleviates Oxidative Damage against Copper Stress. Journal of Integrative Plant Biology, 50, 1518-1529. >https://doi.org/10.1111/j.1744-7909.2008.00769.x
吴帼秀, 李胜利, 李阳, 等. H
2S和NO及其互作对低温胁迫下黄瓜幼苗光合作用的影响[J]. 植物生理学报, 2020, 56(10): 2221-2232.
Li, L., Wang, Y. and Shen, W. (2012) Roles of Hydrogen Sulfide and Nitric Oxide in the Alleviation of Cadmium-Induced Oxidative Damage in Alfalfa Seedling Roots. BioMetals, 25, 617-631. >https://doi.org/10.1007/s10534-012-9551-9
Zhang, J., Zhou, M., Ge, Z., Shen, J., Zhou, C., Gotor, C., et al. (2019) Abscisic Acid-Triggered Guard Cell L-Cysteine desulfhydrase Function and in Situ Hydrogen Sulfide Production Contributes to Heme Oxygenase-Modulated Stomatal Closure. Plant, Cell&Environment, 43, 624-636. >https://doi.org/10.1111/pce.13685
Lamattina, L. and Polacco J.C. (2007) Nitric Oxide in Plant Growth, Development and Stress Physiology. Springer, Heidelberg. >https://doi.org/10.1007/11563280
Liao, W., Huang, G., Yu, J. and Zhang, M. (2012) Nitric Oxide and Hydrogen Peroxide Alleviate Drought Stress in Marigold Explants and Promote Its Adventitious Root Development. Plant Physiology and Biochemistry, 58, 6-15. >https://doi.org/10.1016/j.plaphy.2012.06.012
Desikan, R., Griffiths, R., Hancock, J. and Neill, S. (2002) A New Role for an Old Enzyme: Nitrate Reductase-Mediated Nitric Oxide Generation Is Required for Abscisic Acid-Induced Stomatal Closure in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 99, 16314-16318. >https://doi.org/10.1073/pnas.252461999
刘菁, 侯丽霞, 刘国华, 等. NO介导的H
2S合成参与乙烯诱导的拟南芥气孔关闭[J]. 科学通报, 2011, 56(30): 2515-2522.
Ma, Y., Wang, L. and Zhang, W. (2022) The Role of Hydrogen Sulfide and Its Relationship with Hydrogen Peroxide and Nitric Oxide in Brassinosteroid-Induced Stomatal Closure of Vicia faba L. South African Journal of Botany, 146, 426-436. >https://doi.org/10.1016/j.sajb.2021.11.012
Hosoki, R., Matsuki, N. and Kimura, H. (1997) The Possible Role of Hydrogen Sulfide as an Endogenous Smooth Muscle Relaxant in Synergy with Nitric Oxide. Biochemical and Biophysical Research Communications, 237, 527-531. >https://doi.org/10.1006/bbrc.1997.6878
Zhang, H., Tang, J., Liu, X., Wang, Y., Yu, W., Peng, W., et al. (2009) Hydrogen Sulfide Promotes Root Organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. Journal of Integrative Plant Biology, 51, 1086-1094. >https://doi.org/10.1111/j.1744-7909.2009.00885.x
Wang, Y., Li, L., Cui, W., Xu, S., Shen, W. and Wang, R. (2011) Hydrogen Sulfide Enhances Alfalfa (Medicago sativa) Tolerance against Salinity during Seed Germination by Nitric Oxide Pathway. Plant and Soil, 351, 107-119. >https://doi.org/10.1007/s11104-011-0936-2
Scuffi, D., Álvarez, C., Laspina, N., Gotor, C., Lamattina, L. and García-Mata, C. (2014) Hydrogen Sulfide Generated by L-Cysteine Desulfhydrase Acts Upstream of Nitric Oxide to Modulate Abscisic Acid-Dependent Stomatal Closure. Plant Physiology, 166, 2065-2076. >https://doi.org/10.1104/pp.114.245373